The Effect of Forward-looking Financial Benefits on PV Adoption Patterns

Justus Böning Kenneth Bruninx Marten Ovaere Guido Pepermans Erik Delarue¹

YEEES 32, 06.10.2023

¹J.Böning, G.Pepermans & E.Delarue: KU Leuven; K.Bruninx: TU Delft; M.Ovaere: Ghent University

Böning et al.

YEEES 32, 06.10.2023

Overview

- Motivation & Introduction
- 2 Data and Descriptive Statistics
- 3 Empirical Methodology

4 Results

• "Greening" the residential sector is crucial for the energy transition.

- "Greening" the residential sector is crucial for the energy transition.
- Examples: Zero-emission building stock by 2050, 42.5 percent RES energy by 2030, 100 percent new zero-emissions vehicles by 2035.

- "Greening" the residential sector is crucial for the energy transition.
- Examples: Zero-emission building stock by 2050, 42.5 percent RES energy by 2030, 100 percent new zero-emissions vehicles by 2035.
- Immense investments in the residential sector are required, European Commission estimates annually €151-212 billion in 2021-2030 and €137-192 billion in 2031-2050 (€-2015) (EC, 2019).

- "Greening" the residential sector is crucial for the energy transition.
- Examples: Zero-emission building stock by 2050, 42.5 percent RES energy by 2030, 100 percent new zero-emissions vehicles by 2035.
- Immense investments in the residential sector are required, European Commission estimates annually €151-212 billion in 2021-2030 and €137-192 billion in 2031-2050 (€-2015) (EC, 2019).
- Individual **upfront investment** is often high, **benefits** materialize **in the future** and are often **uncertain**.

- "Greening" the residential sector is crucial for the energy transition.
- Examples: Zero-emission building stock by 2050, 42.5 percent RES energy by 2030, 100 percent new zero-emissions vehicles by 2035.
- Immense investments in the residential sector are required, European Commission estimates annually €151-212 billion in 2021-2030 and €137-192 billion in 2031-2050 (€-2015) (EC, 2019).
- Individual **upfront investment** is often high, **benefits** materialize **in the future** and are often **uncertain**.
- Policy makers often opt for **financial benefits as second-best solution** to **incentivize households** to invest in energy-related appliances.

• Well-documented positive effects of (early) adoption patterns to financial benefits for photovoltaic (PV) installations in the residential sector:

- Well-documented positive effects of (early) adoption patterns to financial benefits for photovoltaic (PV) installations in the residential sector:
 - Effectiveness (reduced-form): upfront rebates (Hughes and Podolefsky, 2015), feed-in-tariffs (Germeshausen, 2018), electricity prices (Gautier and Jacqmin, 2019)

- Well-documented positive effects of (early) adoption patterns to financial benefits for photovoltaic (PV) installations in the residential sector:
 - Effectiveness (reduced-form): upfront rebates (Hughes and Podolefsky, 2015), feed-in-tariffs (Germeshausen, 2018), electricity prices (Gautier and Jacqmin, 2019)
 - **Cost-efficiency (structural models)**: capacity-based upfront vs. output-based (Burr (2016), De Groote and Verboven (2019)), optimal incentive design (Langer and Lemoine (2022), Feger et al. (2022))

- Well-documented positive effects of (early) adoption patterns to financial benefits for photovoltaic (PV) installations in the residential sector:
 - **Effectiveness (reduced-form)**: upfront rebates (Hughes and Podolefsky, 2015), feed-in-tariffs (Germeshausen, 2018), electricity prices (Gautier and Jacqmin, 2019)
 - **Cost-efficiency (structural models)**: capacity-based upfront vs. output-based (Burr (2016), De Groote and Verboven (2019)), optimal incentive design (Langer and Lemoine (2022), Feger et al. (2022))
- Belgium is an interesting example: (sub-)regional energy policies (capacity-based, output-based, cost saving-based) and (sub-)regional electricity costs

- Well-documented positive effects of (early) adoption patterns to financial benefits for photovoltaic (PV) installations in the residential sector:
 - Effectiveness (reduced-form): upfront rebates (Hughes and Podolefsky, 2015), feed-in-tariffs (Germeshausen, 2018), electricity prices (Gautier and Jacqmin, 2019)
 - **Cost-efficiency (structural models)**: capacity-based upfront vs. output-based (Burr (2016), De Groote and Verboven (2019)), optimal incentive design (Langer and Lemoine (2022), Feger et al. (2022))
- Belgium is an interesting example: (sub-)regional energy policies (capacity-based, output-based, cost saving-based) and (sub-)regional electricity costs → sufficient level of variation across time and across regions.

- Well-documented positive effects of (early) adoption patterns to financial benefits for photovoltaic (PV) installations in the residential sector:
 - Effectiveness (reduced-form): upfront rebates (Hughes and Podolefsky, 2015), feed-in-tariffs (Germeshausen, 2018), electricity prices (Gautier and Jacqmin, 2019)
 - **Cost-efficiency (structural models)**: capacity-based upfront vs. output-based (Burr (2016), De Groote and Verboven (2019)), optimal incentive design (Langer and Lemoine (2022), Feger et al. (2022))
- Belgium is an interesting example: (sub-)regional energy policies (capacity-based, output-based, cost saving-based) and (sub-)regional electricity costs → sufficient level of variation across time and across regions.
- How do **higher benefits** affect **PV** adoption patterns (number and average size) (in a month & municipality)?

- Well-documented positive effects of (early) adoption patterns to financial benefits for photovoltaic (PV) installations in the residential sector:
 - Effectiveness (reduced-form): upfront rebates (Hughes and Podolefsky, 2015), feed-in-tariffs (Germeshausen, 2018), electricity prices (Gautier and Jacqmin, 2019)
 - **Cost-efficiency (structural models)**: capacity-based upfront vs. output-based (Burr (2016), De Groote and Verboven (2019)), optimal incentive design (Langer and Lemoine (2022), Feger et al. (2022))
- Belgium is an interesting example: (sub-)regional energy policies (capacity-based, output-based, cost saving-based) and (sub-)regional electricity costs → sufficient level of variation across time and across regions.
- How do **higher benefits** affect **PV** adoption patterns (number and average size) (in a month & municipality)?
- How effective are different incentive designs with future financial benefits?

Data

• Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~80,000 observations.

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~80,000 observations.
- **Dependent Variable** variation by month and zip : number and average capacity size of new PV installations in the residential sector (≤10KWp) (source: VEKA, SPW)

dep vars summary

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~80,000 observations.
- Dependent Variable variation by month and zip : number and average capacity size of new PV installations in the residential sector (≤10KWp) (source: VEKA, SPW)
- Main explanatory variables variation by month and region: discounted net-benefits and discounted separate benefits per KW (source: market reports VREG & CWaPE). equations

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~80,000 observations.
- Dependent Variable variation by month and zip : number and average capacity size of new PV installations in the residential sector (≤10KWp) (source: VEKA, SPW)
 dep vars summary
- Main explanatory variables variation by month and region: discounted net-benefits and discounted separate benefits per KW (source: market reports VREG & CWaPE). equations
- **Control variables** *variation by year and zip*: median income deflated (source: statbel), sociodemographics and building characteristics (source: Walstat/provincies.incijfers)

exp vars summary

Monthly Adoptions per Region

Monthly Adoptions per Region

Monthly Adoptions per Region

YEEES 32, 06.10.2023

• **Upfront investment cost:** From €5,800 in 2008 to €1,250 in 2019 per kW of installed capacity.

- **Upfront investment cost:** From €5,800 in 2008 to €1,250 in 2019 per kW of installed capacity.
- **Tax credits:** 40% of cost, maximum amount ranged from €2,600 in 2008 to €3,600 in 2011 (shift to subsequent years possible), **countrywide**.

- **Upfront investment cost:** From €5,800 in 2008 to €1,250 in 2019 per kW of installed capacity.
- **Tax credits:** 40% of cost, maximum amount ranged from €2,600 in 2008 to €3,600 in 2011 (shift to subsequent years possible), **countrywide**.
- Green certificates (GCs): fixed yearly compensation for each MWh of produced electricity for a guaranteed time span, varies by region and month (2006-2014), output-based.

- **Upfront investment cost:** From €5,800 in 2008 to €1,250 in 2019 per kW of installed capacity.
- **Tax credits:** 40% of cost, maximum amount ranged from €2,600 in 2008 to €3,600 in 2011 (shift to subsequent years possible), **countrywide**.
- Green certificates (GCs): fixed yearly compensation for each MWh of produced electricity for a guaranteed time span, varies by region and month (2006-2014), output-based.
- Qualiwatt in Wallonia: yearly compensation (readjusted, 5 year span) for first 3 kW of installed capacity (2014-2018), varies by sub-region, capacity-based.

- **Upfront investment cost:** From €5,800 in 2008 to €1,250 in 2019 per kW of installed capacity.
- **Tax credits:** 40% of cost, maximum amount ranged from €2,600 in 2008 to €3,600 in 2011 (shift to subsequent years possible), **countrywide**.
- Green certificates (GCs): fixed yearly compensation for each MWh of produced electricity for a guaranteed time span, varies by region and month (2006-2014), output-based.
- Qualiwatt in Wallonia: yearly compensation (readjusted, 5 year span) for first 3 kW of installed capacity (2014-2018), varies by sub-region, capacity-based.
- **Net-metering:** grid off-take (excess consumption) and injection (excess production) are netted on an annual basis, varies by region, **cost saving-based**.

- **Upfront investment cost:** From €5,800 in 2008 to €1,250 in 2019 per kW of installed capacity.
- **Tax credits:** 40% of cost, maximum amount ranged from €2,600 in 2008 to €3,600 in 2011 (shift to subsequent years possible), **countrywide**.
- Green certificates (GCs): fixed yearly compensation for each MWh of produced electricity for a guaranteed time span, varies by region and month (2006-2014), output-based.
- Qualiwatt in Wallonia: yearly compensation (readjusted, 5 year span) for first 3 kW of installed capacity (2014-2018), varies by sub-region, capacity-based.
- **Net-metering:** grid off-take (excess consumption) and injection (excess production) are netted on an annual basis, varies by region, **cost saving-based**.
- **Prosumer tariff in Flanders:** yearly fee per installed capacity for PV-owners, introduced in 2015 only in Flanders, varies by sub-region, **capacity-based cost**.

Discounted Benefits per Region 4 kWp System

Discounted Benefits per Region 4 kWp System

Discounted Benefits per Region 4 kWp System

YEEES 32, 06.10.2023

• Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- **Poisson Pseudo Maximum Likelihood Estimator** (PPMLE) for count data (Wooldridge, 2010, chapter 10).

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- **Poisson Pseudo Maximum Likelihood Estimator** (PPMLE) for count data (Wooldridge, 2010, chapter 10).

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$

$$PV_{it} = \exp[\sum_{i \in J} \beta^j \times b_{rt}^j + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$

$$j \in \{gc, nm, qw, pr\}$$

$$(2)$$

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- **Poisson Pseudo Maximum Likelihood Estimator** (PPMLE) for count data (Wooldridge, 2010, chapter 10).

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$

$$PV_{it} = \exp[\sum_{j \in J} \beta^j \times b_{rt}^j + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$

$$j \in \{gc, nm, qw, pr\}$$

$$(2)$$

• Identification of benefit coefficients:

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- **Poisson Pseudo Maximum Likelihood Estimator** (PPMLE) for count data (Wooldridge, 2010, chapter 10).

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$

$$PV_{it} = \exp[\sum_{j \in J} \beta^j \times b_{rt}^j + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$

$$j \in \{gc, nm, qw, pr\}$$

$$(2)$$

- Identification of benefit coefficients:
 - Output-based benefits: **changes** in guaranteed **prices and payback period** (pre-determined).

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- **Poisson Pseudo Maximum Likelihood Estimator** (PPMLE) for count data (Wooldridge, 2010, chapter 10).

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$

$$PV_{it} = \exp[\sum \beta^j \times b_{rt}^j + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$

$$i \in \{gc, nm, gw, pr\}$$

$$(2)$$

$$PV_{it} = \exp[\sum_{j \in J} \beta^{j} \times b'_{rt} + \gamma \times X_{it} + \mu_{i} + \psi_{t}] \cdot u_{it} \qquad j \in \{gc, nm, qw, pr\}$$
(2)

- Identification of benefit coefficients:
 - Output-based benefits: **changes** in guaranteed **prices and payback period** (pre-determined).
 - Capacity-based benefits/cost: changes in price/cost based on past observations.

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- **Poisson Pseudo Maximum Likelihood Estimator** (PPMLE) for count data (Wooldridge, 2010, chapter 10).

$$\mathsf{P}V_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$
(1)

$$PV_{it} = \exp\left[\sum_{j \in J} \beta^{j} \times b_{rt}^{j} + \gamma \times \boldsymbol{X}_{it} + \mu_{i} + \psi_{t}\right] \cdot u_{it} \qquad j \in \{gc, nm, qw, pr\}$$
(2)

- Identification of benefit coefficients:
 - Output-based benefits: **changes** in guaranteed **prices and payback period** (pre-determined).
 - Capacity-based benefits/cost: changes in price/cost based on past observations.
 - Cost saving-based benefits: **changes** in regional **electricity prices**, possibly endogenous because of network tariff adjustments.

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- **Poisson Pseudo Maximum Likelihood Estimator** (PPMLE) for count data (Wooldridge, 2010, chapter 10).

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times \boldsymbol{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$
(1)

$$PV_{it} = \exp\left[\sum_{j \in J} \beta^{j} \times b_{rt}^{j} + \gamma \times \boldsymbol{X}_{it} + \mu_{i} + \psi_{t}\right] \cdot u_{it} \qquad j \in \{gc, nm, qw, pr\}$$
(2)

- Identification of benefit coefficients:
 - Output-based benefits: **changes** in guaranteed **prices and payback period** (pre-determined).
 - Capacity-based benefits/cost: changes in price/cost based on past observations.
 - Cost saving-based benefits: **changes** in regional **electricity prices**, possibly endogenous because of network tariff adjustments.

As an extension: **instrumental variable (IV)** control function approach (Gillingham and Tsvetanov, 2019). Instrument: network tariff-free regional electricity prices.

Böning et al.

YEEES 32, 06.10.2023

Results Number of Installations

Böning et al.

Results Number of Installations

	Aggregate	e benefits	Sep. benefits	Sep. benefits (IV)
Model:	(1)	(2)	(3)	(4)
net benefits (log)	6.83*** <i>(0.085)</i>			
net benefits (thous)		1.05*** <i>(0.019)</i>		
GC (thous)			1.34*** (0.025)	1.18*** <i>(0.023)</i>
net metering (thous)			0.836*** <i>(0.035)</i>	0.679*** (0.041)
prosumer tariff (thous)			-1.94*** <i>(0.092)</i>	-1.20*** (0.094)
QW (thous)			1.45*** (0.042)	1.25*** (0.045)
Zip-, Month-, Year-fixed effects:	Yes	Yes	Yes	Yes
Additional Control Variables:	Yes	Yes	Yes	Yes
Observations	78,048	78,048	78,048	78,048

Standard-errors in parentheses, Signif. Codes: ***: 0.01, **: 0.05, *: 0.1, observations are at the monthly municipality level. Time span is 2008-2019. Standard-errors for PPMLE (1)-(3) clustered at the municipality-level, for IV estimates (4) bootstrapped. IV estimates contains sub-regional variation in QW and prosumer tariff benefit variables.

• High sensitivity of future benefits on PV adoption in the residential sector.

- High sensitivity of future benefits on PV adoption in the residential sector.
- **Coefficients** on separate benefits are **comparable to** previous **literature** for the various benefit schemes ((Hughes and Podolefsky, 2015), (Talevi, 2022), (Gautier and Jacqmin, 2019)).

- High sensitivity of future benefits on PV adoption in the residential sector.
- **Coefficients** on separate benefits are **comparable to** previous **literature** for the various benefit schemes ((Hughes and Podolefsky, 2015), (Talevi, 2022), (Gautier and Jacqmin, 2019)).
- **Output-** and capacity-based (direct) benefits are around **60-80% more effective** compared to cost saving-based (indirect) net-metering benefits.

- High sensitivity of future benefits on PV adoption in the residential sector.
- **Coefficients** on separate benefits are **comparable to** previous **literature** for the various benefit schemes ((Hughes and Podolefsky, 2015), (Talevi, 2022), (Gautier and Jacqmin, 2019)).
- **Output-** and capacity-based (direct) benefits are around **60-80% more effective** compared to cost saving-based (indirect) net-metering benefits.
- Different effectiveness could be due to **differences in the benefit designs**, i.e. **uncertainty**, level of **directness** and **salience**.

- High sensitivity of future benefits on PV adoption in the residential sector.
- **Coefficients** on separate benefits are **comparable to** previous **literature** for the various benefit schemes ((Hughes and Podolefsky, 2015), (Talevi, 2022), (Gautier and Jacqmin, 2019)).
- **Output-** and capacity-based (direct) benefits are around **60-80% more effective** compared to cost saving-based (indirect) net-metering benefits.
- Different effectiveness could be due to **differences in the benefit designs**, i.e. **uncertainty**, level of **directness** and **salience**.
- Accounting for **short-term dynamics** or **changes in the assumed discount rate** (robustness) **short-term dynamics discount rates**

- High sensitivity of future benefits on PV adoption in the residential sector.
- **Coefficients** on separate benefits are **comparable to** previous **literature** for the various benefit schemes ((Hughes and Podolefsky, 2015), (Talevi, 2022), (Gautier and Jacqmin, 2019)).
- **Output-** and capacity-based (direct) benefits are around **60-80% more effective** compared to cost saving-based (indirect) net-metering benefits.
- Different effectiveness could be due to **differences in the benefit designs**, i.e. **uncertainty**, level of **directness** and **salience**.
- Accounting for **short-term dynamics** or **changes in the assumed discount rate** (robustness) short-term dynamics discount rates
 - Results generally confirm lower effectiveness of cost saving-based benefits.

- High sensitivity of future benefits on PV adoption in the residential sector.
- **Coefficients** on separate benefits are **comparable to** previous **literature** for the various benefit schemes ((Hughes and Podolefsky, 2015), (Talevi, 2022), (Gautier and Jacqmin, 2019)).
- **Output-** and capacity-based (direct) benefits are around **60-80% more effective** compared to cost saving-based (indirect) net-metering benefits.
- Different effectiveness could be due to **differences in the benefit designs**, i.e. **uncertainty**, level of **directness** and **salience**.
- Accounting for **short-term dynamics** or **changes in the assumed discount rate** (robustness) short-term dynamics discount rates
 - Results generally confirm lower effectiveness of cost saving-based benefits.
 - Declining difference in coefficients between cost saving- and capacity-based benefits suggests importance of salience as major determinant.

Results on Average Capacity Size Installations

Results on Average Capacity Size Installations

	Aggregat	e benefits	Separate benefits	Separate benefits (IV)
Model:	(2)	(3)	(4)	(5)
net benefits (log)	1.40*** (0.048)			
net benefits (thous)		0.344 ^{***} <i>(0.010)</i>		
GC (thous)			0.390*** (0.012)	0.365*** <i>(0.012)</i>
net metering (thous)			-0.113*** (0.022)	-0.112*** (0.030)
prosumer tariff (thous)			-0.310*** (0.044)	-0.253*** (0.047)
QW (thous)			-0.144*** (0.027)	-0.201*** (0.036)
Zip-, Month-, Year-fixed effects:	Yes	Yes	Yes	Yes
Additional Control Variables:		Yes	Yes	Yes
Observations	78,048	78,048	78,048	78,048

Clustered (zip) standard-errors in parentheses, Signif. Codes: ***: 0.01, **: 0.05, *: 0.1, observations are at the monthly municipality level. Time span is 2008-2019. Observations before and after observable benefit changes dropped

Böning et al.

• Meaningful but smaller **effect of benefits on average capacity size**: A 1% increase in benefits increases average capacity by 1.4%.

- Meaningful but smaller effect of benefits on average capacity size: A 1% increase in benefits increases average capacity by 1.4%.
- **Output-based** GC benefits are solely responsible for overall **positive effect** on capacity size.

- Meaningful but smaller effect of benefits on average capacity size: A 1% increase in benefits increases average capacity by 1.4%.
- **Output-based** GC benefits are solely responsible for overall **positive effect** on capacity size.
- Negative effect of **capacity-based cost** of prosumer tariff similar in magnitude to GC benefits.

- Meaningful but smaller effect of benefits on average capacity size: A 1% increase in benefits increases average capacity by 1.4%.
- **Output-based** GC benefits are solely responsible for overall **positive effect** on capacity size.
- Negative effect of **capacity-based cost** of prosumer tariff similar in magnitude to GC benefits.
- Cost saving-based and capacity-based benefits affect average capacity size negatively.

- Meaningful but smaller effect of benefits on average capacity size: A 1% increase in benefits increases average capacity by 1.4%.
- **Output-based** GC benefits are solely responsible for overall **positive effect** on capacity size.
- Negative effect of **capacity-based cost** of prosumer tariff similar in magnitude to GC benefits.
- Cost saving-based and capacity-based benefits affect average capacity size negatively.
- Results suggest **behavior in line with benefit design**: thresholds on compensated capacity reduce average capacity, while absence of thresholds increases capacity.

• Main contribution: estimation of (nearly) the **complete benefit side** of PV adoption and the **direct comparison of** the most prominent **benefit schemes** via reduced-form.

- Main contribution: estimation of (nearly) the **complete benefit side** of PV adoption and the **direct comparison of** the most prominent **benefit schemes** via reduced-form.
- We find a generally high sensitivity of PV adoption patterns to future benefits.

- Main contribution: estimation of (nearly) the **complete benefit side** of PV adoption and the **direct comparison of** the most prominent **benefit schemes** via reduced-form.
- We find a generally high sensitivity of PV adoption patterns to future benefits.
- Not all output-based benefit schemes are similarly effective: **less uncertain**, **direct** and **more salient** benefits yield **higher** installation numbers.

- Main contribution: estimation of (nearly) the **complete benefit side** of PV adoption and the **direct comparison of** the most prominent **benefit schemes** via reduced-form.
- We find a generally high sensitivity of PV adoption patterns to future benefits.
- Not all output-based benefit schemes are similarly effective: **less uncertain**, **direct** and **more salient** benefits yield **higher** installation numbers.
- The effect on average capacity also depends on the benefit scheme: households increase the number of panels if it is compensated.

Thank you for listening!

References

Burr, C. (2016). Subsidies and investments in the solar power market. Working Paper.

- De Groote, O. and Verboven, F. (2019). Subsidies and time discounting in new technology adoption: Evidence from solar photovoltaic systems. *American Economic Review*, 109(6):2137–2172.
- EC (2019). Commission staff working document impact assessment, stepping up europeâs 2030 climate ambition, investing in a climate-neutral future for the benefit of our people. Technical report, European Commission.
- Feger, F., Pavanini, N., and Radulescu, D. (2022). Welfare and redistribution in residential electricity markets with solar power. *The Review of Economic Studies*, 89(6):3267–3302.
- Gautier, A. and Jacqmin, J. (2019). PV adoption: the role of distribution tariffs under net metering. *Journal of Regulatory Economics*, 57(1):53–73.
- Germeshausen, R. (2018). Effects of attribute-based regulation on technology adoption â the case of feed-in tariffs for solar photovoltaic. SSRN Electronic Journal.
- Gillingham, K. and Tsvetanov, T. (2019). Hurdles and steps: Estimating demand for solar photovoltaics. *Quantitative Economics*, 10(1):275–310.
- Hughes, J. E. and Podolefsky, M. (2015). Getting green with solar subsidies: Evidence from the california solar initiative. *Journal of the Association of Environmental and Resource Economists*, 2(2):235–275.
- Langer, A. and Lemoine, D. (2022). Designing dynamic subsidies to spur adoption of new technologies. *Journal of the* Association of Environmental and Resource Economists, 9(6):1197–1234.

Talevi, M. (2022). Incentives for the energy transition: Feed-in tariffs, rebates or a hybrid design? Working Paper.

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. The MIT Press.

Böning et al.

YEEES 32, 06.10.2023

Present Value Equations

$$b_{i,s,r,t}^{tc}(cap) = \sum_{t=1}^{4} \beta^{12t} taxcut_t(cap)$$
(3)

$$b_{i,r,t}^{gc}(cap) = \beta \cdot (1 - (\beta^{gc})^{T_{r,t}^{gc}}) (1 - \beta^{gc})^{-1} \cdot n_{r,t}^{gc} \cdot p_{r,t}^{gc} \cdot \bar{y}(cap)/12$$
(4)

$$b_{i,r,t}^{nm}(cap) = \beta \cdot (1 - (\beta^{nm})^{T^{tt}}) (1 - \beta^{nm})^{-1} \cdot p_{s,r,m}^{gt} \cdot \bar{y}(cap)/12$$
(5)

$$b_{i,r,t}^{qw}(cap) = \beta \cdot (1 - (\beta^{qw})^{T^{qw}}) (1 - \beta^{qw})^{-1} \cdot p_{r,m}^{qw} \cdot \min(cap, 3kW)$$
(6)

$$b_{i,r,t}^{pr}(cap) = \beta \cdot (1 - (\beta^{pr})^{T^{tt}}) (1 - \beta^{pr})^{-1} \cdot p_{s,r,m}^{pr} \cdot AC^{sh} \cdot cap^{p}$$
(7)

back

Explanatory Variables - Summary Statistics 2

Variable	Mean	SD	Min	Median	Max	Observations
Benefit Variables						
net benefits (log)	8.48	0.42	7.72	8.32	9.12	70,308
net benefits (thousand)	5.25	2.23	2.25	4.09	9.15	70,308
GC (thousand)	1.95	2.37	0.00	0.00	5.89	70,308
net metering (thousand)	3.38	0.48	2.55	3.31	4.60	70,308
prosumer tariff (thousand)	0.18	0.33	-0.00	0.00	0.86	70,308
Qualiwatt (thousand)	0.11	0.28	0.00	0.00	1.11	70,308
Sociodemographics						
households (log)	8.49	0.86	3.50	8.50	12.37	6,696
net med income per decl. defl. (log)	10.09	0.11	9.72	10.11	10.44	6,516
population density (log)	5.63	1.00	3.18	5.69	8.17	6,696
age:below 18 (sh.)	0.21	0.02	0.10	0.20	0.29	6,696
age:18-49 (sh.)	0.41	0.02	0.24	0.41	0.51	6,694
age:above 64 (sh.)	0.18	0.03	0.10	0.18	0.40	6,694
age:50-64 (sh.)	0.20	0.02	0.13	0.20	0.32	6,696
non-nationals (sh.)	0.06	0.06	0.00	0.04	0.52	6,696
nationals (sh.)	0.94	0.06	0.48	0.96	1.00	6,696
female (sh.)	0.51	0.01	0.40	0.51	0.54	6,696
male (sh.)	0.49	0.01	0.46	0.49	0.60	6,696

Explanatory Variables - Summary Statistics 2

Variable	Mean	SD	Min	Median	Max	Observations
Household Characteristics						
hh single (sh.)	0.24	0.08	0.10	0.22	0.55	6,684
hh single parent (sh.)	0.08	0.03	0.03	0.06	0.18	6,684
hh couple /w children (sh.)	0.36	0.06	0.16	0.37	0.52	6,684
hh couple w/o children (sh.)	0.32	0.08	0.16	0.34	0.51	6,684
Building Characteristics						
house age:until 1981 (sh.)	0.73	0.08	0.46	0.72	0.95	6,696
house age:after 1981 (sh.)	0.27	0.08	0.05	0.28	0.54	6,696
house type:apartments (sh.)	0.12	0.11	0.00	0.09	0.79	6,696
house type:single fam closed (sh.)	0.19	0.13	0.01	0.15	0.71	6,696
house type:single fam semi-detached (sh.)	0.25	0.07	0.03	0.25	0.42	6,696
house type:single fam open (sh.)	0.45	0.19	0.01	0.47	0.85	6,696

back

Dependent Variable: PV installations

Region	zip	Total	Obs.	zerosh.	PV installations/obs.				mean cap. (KWp)/obs.				
		PV	(thous.)	/obs.	mean r	med-	sd	min	max	mean	sd	min	max
		(thous.)			i,	an							
Flanders	300	428,175	43,200	0.13	9.91 5	5.00	16	0	336	4.49	1.25	0.54	10.00
Wallonia	258	152,078	37,152	0.30	4.09 2	2.00	8	0	278	4.96	1.36	0.75	10.00
Total	558	580,253	80,352	0.21	7.22 3	3.00	13	0	336	4.68	1.32	0.54	10.00

Robustness: Accounting for short-term dynamics

	Numb	er of PV insta	llations	Average new installed capacity				
	Agg. ben.	Sep. ben.	Sep. ben. (IV)	Agg. ben.	Sep. ben.	Sep. ben. (IV)		
Model:	(1)	(2)	(3)	(4)	(5)	(6)		
net benefits (thous)	1.30*** (0.018)			0.368*** (0.012)				
prosumer tariff (thous)		-0.407*** (0.089)	-0.665*** (0.077)		-0.312*** (0.049)	-0.251*** (0.052)		
GC (thous)		1.30*** (0.027)	1.26*** (0.024)		0.429*** (0.015)	0.406*** (0.015)		
net metering (thous)		0.066 (0.044)	0.796*** (0.056)		-0.164*** (0.027)	-0.157*** (0.042)		
QW (thous)		0.724*** (0.047)	0.910*** (0.046)		-0.151* ^{**} (0.030)	-0.186* ^{**} (0.042)		
Controls, time-&zip-fixed effects: Observations	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775		

back

Böning et al.

Robustness: Different discount rates

		Standard	PPMLE		IV Controlfunction				
	0% DR	3% DR	7% DR	15%	0% DR	3% DR	7% DR	15%	
		(base-		DR		(base-		DR	
		line)				line)			
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
prosumer tariff (thous)	-0.943***	-1.64***	-2.85***	-5.93***	-0.551***	-1.01***	-1.77***	-3.58***	
	(0.056)	(0.077)	(0.114)	(0.211)	(0.055)	(0.079)	(0.119)	(0.218)	
GC (thous)	1.04***	1.34***	1.78***	2.73***	0.935***	1.18***	1.52***	2.23***	
	(0.020)	(0.025)	(0.032)	(0.051)	(0.018)	(0.023)	(0.029)	(0.044)	
net metering (thous)	0.583***	0.836***	1.26***	2.37***	0.441***	0.679***	1.07***	2.01***	
- • •	(0.027)	(0.035)	(0.049)	(0.082)	(0.030)	(0.041)	(0.059)	(0.103)	
QW (thous)	1.17** [*]	1.45** [*]	1.81^{***}	2.47** [*]	0.961* ^{**} *	1.25** [*]	1.59** [*]	2.15** [*]	
	(0.038)	(0.042)	(0.048)	(0.060)	(0.040)	(0.045)	(0.052)	(0.066)	
Controls, time-&zip-fixed effects:	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Observations:	78,048	78,048	78,048	78,048	78,048	78,048	78,048	78,048	

back

Böning et al.