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Abstract—This paper presents a methodology for assessing the
congestion probability on a low-voltage (LV) distribution grid
caused by LV residential assets providing frequency ancillary
services combined with decentralized energy resources, like
residential photovoltaic panels (PV). End-user profiles consider
three probabilistic components: LV assets providing frequency
ancillary services, baseload profiles and PV generation. Both
frequency containment reserve (FCR) and automatic frequency
restoration reserve (aFRR) are considered. This paper demon-
strates the added value of using an Auto-Regressive Moving
Average (ARMA) model to forecast frequency ancillary services
compared to a simple normal distribution. It further highlights
the application of FCR models for both constant and instanta-
neous congestion, which prevents overestimating FCR-induced
LV congestion. Additionally, this paper shows that allowing
aggregators to activate LV assets for aFRR using a portfolio-
based approach leads to higher LV congestion than a limited-
reservoir approach.

Index Terms—LV congestion, frequency ancillary services,
FCR, aFRR.

I. INTRODUCTION

COUNTRIES all around the world, and in particular
European countries, aim to achieve ambitious climate

goals and to reduce CO2 emissions, by increasing renewable
energy production and increasing loads electrification. This on-
going energy transition is strongly impacting the Low-Voltage
(LV) distribution grid (< 1kV), as end users are increasingly
installing distributed energy resources (e.g. photovoltaic panels
(PV)), energy storage systems (e.g. residential batteries) or
electric loads (e.g. electric vehicles (EV) for mobility, heat
pumps (HP) for heating). These distributed energy resources
are more and more encouraged to provide flexibility services,
such as frequency regulation (or frequency ancillary services).
For instance, in the European regulatory framework, Trans-
mission System Operators (TSOs) are encouraged to rely on
flexible assets connected to distribution grids to balance the
system [1]. Nevertheless, activating or deactivating flexible LV
assets to provide frequency ancillary services can lead to the
violation of operational limits (e.g., voltages and currents) at
the distribution level, increasing congestion risks for Distribu-
tion System Operators (DSOs).

This study is conducted under the framework of the federal Belgian project
named ALEXANDER, funded by the Transition Energy Fund.

In that context, it is of paramount importance for DSOs to be
able to assess the risk of congestion due to assets participating
to frequency regulation in the presence of distributed energy
resources, in order to plan and/or to operate the system such
that the violation of operational limits can be avoided.

The quantification of the risk of congestion requires first an
identification of the relevant operational limits that must be
respected. At the level of distribution systems, two types of
electrical variables must be maintained between specific limits:
voltages at the various busses and currents on distribution
elements (lines, transformers). Due to thermal inertia, currents
do not have to be at any time to be below the branch rating.
However, they have to be below the rating on a 15-min basis.
Similarly, according to the EN 50160 standard, average 10
minutes rms values should be between -10% and +10% of the
nominal voltage for 95% of week. But, contrarily to current
limits, voltages must be also between specific limits at all
times, instantaneously, i.e. for a 10-seconds granularity. For
instance, in Belgium, generating units connected to distribution
grids (e.g., PV) must be disconnected as soon as the voltage
exceeds by 15% its nominal value. Consequently, the quantifi-
cation of the risk of congestion requires to estimate average
values of currents and voltages over 15 minutes, but also
instantaneous values of voltages within these time periods.

Several methods have been proposed to assess the risk of
congestion in LV distribution grids due to LV assets. For
instance, [2] and [3] assess the impact on a LV distribution
grid of LV assets such as EV, HP and PV, and [4] studies the
impact of HP and PV on a Belgian LV feeder. Furthermore,
[5] analyses the impact of LV assets (batteries, PV, EVs)
on a real Norway grid for market-oriented activities, such as
P2P and local markets. However, to the best of the authors’
knowledge, only a very limited number of works consider
LV assets providing frequency ancillary services and their
impact caused on the LV distribution grid. Ref. [6] studies
the congestion of a European LV network caused by batteries
providing self-consumption combined with other activities,
such as frequency reserves. Nevertheless, this works deal only
with average values of currents and voltages over constant
congestion period (i.e. 15 minutes), and none of them deal
with instantaneous values of voltages within these time periods
(i.e. 10-seconds). It is thus inadequate to estimate the risk of



congestion due to frequency regulation. In North America, the
transient response of LV aggregate loads providing frequency
regulation is investigated in [7]. The study focuses on the
surge currents due to building Heating Ventilation and Air-
Conditioning (HVAC) loads when they are asked to increase
their consumption (inrush/starting currents of induction mo-
tors). These surge currents, lasting typically a few hundreds
of milliseconds, can have severe adverse effect on protection
systems (unwanted trips). Although that work deals with
instantaneous values of electrical quantities, it focuses on a
problem very specific to induction motors and the approach
cannot be transposed to the risk of congestion for all assets
providing frequency ancillary services. There is thus a gap in
the literature to assess the risk of congestion in distribution
grids due to frequency regulation.

Consequently, this paper addresses this gap by proposing
a novel approach to estimate average values of currents and
voltages over 15 minutes, but also values of voltages with a
higher granularity within these time periods, and by demon-
strating its effectiveness on a case study. More specifically,
the methodology will build on a Probabilistic Power Flow
(PPF) [8]–[10] solved using Monte Carlo (MC) simulation.
Three sources of uncertainty will be considered: LV assets
profiles providing frequency ancillary services, non-flexible
end-users profiles and photovoltaic production profiles. This
PPF will lead to average values of currents and voltages
over 15 minutes. The main original contribution of this paper
consists in complementing this PPF with an Auto-Regressive
Moving Average (ARMA) model predicting frequency at
higher granularity (10 seconds) to estimate also value of
voltages at that high granularity within period of 15 minutes.

The remainder of the paper is organized as follows. Sec-
tion II presents the PPF methodology, with emphasis on
the stochastic model to capture the uncertainty of LV assets
providing frequency ancillary services (i.e. the ARMA model).
Section III describes the case study considered and presents
and discuss associated results. Finally, Section IV highlights
the main conclusions of this paper.

II. METHODOLOGY

The PPF methodology, based on [8] and [11] and depicted
in fig. 1, is employed to analyze the congestion probability of
LV distribution grid caused by LV assets providing frequency
ancillary services. The process begins with generating N
stochastic profiles assigned to each customer based on the
load profiles, for 15-minute intervals over a day (96 timesteps).
Stochastic profiles and grid data are used as inputs to compute
N deterministic power flow (PF) across 96 time steps. PF
results are then evaluated against congestion thresholds.

The methodology is divided into three subsections (Profiles
Calculation, Power Flow calculation and Congestion Analy-
sis), with particular emphasis on the profiles calculation of
LV assets providing frequency regulation for both context,
constant (15-minute) and instantaneous (10-second resolu-
tions), as these represent the key highlights of this work.
More complex non-flexible and PV load profiles are available

Fig. 1. Flow chart of the PPF used in this paper

in the literature; however, their implementation falls outside
the scope of this paper, which primarily focuses on modeling
flexible load profiles that provide frequency ancillary services.
The grid data will then be further detailed in the case study.

A. Profiles calculation

As illustrated in fig. 1, stochastic load profiles assigned
to each end-user are built on three components: a stochastic
model for LV assets providing frequency regulation that will
be particularly deepened in this subsection, a stochastic model
for non-flexible load and a stochastic model for PV production.
The term load, load profile or profile refer to both consumption
and production, modeled as constant complex power given by
eq. (1) for each timestep t and for each scenario N .

St
b = St

flex,b + St
nonflex,b + St

pv,b (1)

This paper focuses on frequency ancillary services, specifi-
cally primary reserve due to its rapid and automatic activation,
and secondary reserve due to its slightly slower but still fast
activation and larger volume requirements. These reserves
are defined as Frequency Containment Reserve (FCR) and
automatic Frequency Restoration Reserve (aFRR), as applied
for Continental Europe [1]. The focus on FCR and aFRR is
particularly relevant since they are the first reserves accessible
to LV assets in Europe. Fo example: since 2024, LV assets
in Belgium are eligible for both FCR and aFRR services,
comprising 10% of the assets pre-qualified for FCR [12].
Other frequency reserves, such as Replacement Reserve (RR)
or faster reserves like the fast frequency reserve used in Nordic
countries, are not considered in this study.

1) Flexible profile - Constant FCR: LV load profiles pro-
viding FCR are modeled as proportional to the global system
frequency deviation ∆f t, as defined in eq. (2). In this context,



Pmax,b represents the maximum power reserved by each end-
user for FCR. The frequency deviation ∆f t is calculated using
10-second frequency values f t, which are randomly sampled
from an ARMA model entertained on 10-seconds historical
data available on Elia’s opendata platform [13]. The ARMA
method is chosen because it is a relevant technique to forecast
signal based on time series with a high self-correlation, which
is the case for global power system frequency [14], [15].

To model constant FCR, values are averaged over each 15-
minute time step into f t

avg to compute ∆f t. The computation,
detailed in eq. (3), accounts for a maximum frequency devia-
tion fmax of ±200 mHz, a deadband ∆fdb of 10 mHz, and a
nominal frequency fnom of 50 Hz. It is important to note that
∆f t is uniform across all end-users at each time step, while
Pmax,b varies between individual end-users.

St
flex,b = Pmax,b∆f t (2)

∆f t =


fnom−ft

avg

∆fmax
if ∆fdb < |f t

avg − fnom| < ∆fmax

1 if (fnom − f t
avg) ≥ ∆fmax

−1 if (fnom − f t
avg) ≤ ∆fmax

0 otherwise
(3)

2) Flexible profile - instantaneous FCR: The previous
paragraph supports the use of averaged frequency data to
study impact of FCR on LV distribution congestion for normal
context. In contrast, this paragraph highlights the need to
consider worst-case data to assess instantaneous frequency
deviations impact on the congestion, where LV asset are
modeled as St

fcr,b = Pmax,b.
Indeed, in the case of unexpected extreme events, extreme

frequency deviations, i.e. frequency deviation reaching the
maximum limit fmax, occurring over few single 10-second
time steps, can lead to extreme load profiles activated co-
incidentally and potentially causing instantaneous LV net-
work congestion. Since frequency deviations are currently
averaged over 15 minutes in the constant model, the worst-
case scenario, and its corresponding worst-case load profile,
is not fully captured in the averaged data. Three factors,
i.e. automatic activation, magnitude of volumes involved, and
activation coincidences, stresses the need to further investigate
into the impact of instantaneous frequency deviations on
the LV distribution grid. While such events are inherently
unpredictable, the evolution of the frequency signal after the
event can still be anticipated. Evaluating this impact includes
assessing the transmission grid’s ability to contain and restore
frequency following extreme events and determining whether
DSOs should account for such deviations in both constant and
instantaneous congestion.

3) Flexible profile - aFRR profile: For the aFRR, several
papers study the design strategy of aggregators to optimally de-
fine their bids for the auction mechanism [16], [17]. However,
DSOs are not expected to know the specific design strategies

of aggregators owning flexible assets located on their local
grid.

In this context, this paper does not consider the aggregators’
own design strategy but focuses on the possible impact of the
LV assets providing aFRR if dispatched by TSO and fully acti-
vated by the aggregator. When the LV assets provide aFRR, LV
assets are considered to provide full power activation for each
product (positive or negative) starting at tstart and ending at
tend as represented in eq. (4). Hence, maximum deterministic
power profile is considered when LV asset provide aFRR for
a specific product.

St
flex,b =

{
±PT

afrrmax,b for T in [tstart, tend]

0 otherwise
(4)

In Belgium, flexible assets with a limited reservoir providing
aFRR must ensure full activation of contracted power over a 4-
hour period [18]. Two approaches are analyzed: (1) the limited
reservoir approach, where maximum power is constrained by
each asset’s available energy, and (2) the portfolio approach,
where full power is modeled as activated. These approaches
are evaluated in the case studies to assess aFRR’s impact on
the LV distribution grid.

4) Non-flexible profile: For stochastic non-flexible load
profiles, a unique load profile St

nonflex,b is generated for each
customer across all 96 timesteps t of the day for each of the N
scenarios. The non-flexible load profile for each end-user and
each time step is given by eq. (5) where Eyear,b is the yearly
consumption of each end-user. St

slp,b is generated by randomly

sampling from a normal distribution N (SLPt,
SLPt

2

2
). The

standard deviation is set to half of the mean active power.

St
nonflex,b = St

slp,b · Eyear,b (5)

5) PV profile: PV production profiles are given by equation
(6). The capacities of the solar panels, Ppanels,b, and inverters,
Pinv,b, are assumed to be known. For each scenario, a single
irradiation profile, It, is randomly generated for all PV panels
across the 96 time steps. This irradiation profile is derived
from historical solar irradiation data collected over the past
six years. The efficiency coefficient, ηeff , is used to convert
the irradiation into energy production, expressed in kWh

kW per
time period.

St
pv,b = It · ηeff ·min(Ppanels,b, Pinv,b) (6)

B. Power flow calculation

The implemented power flow is an unbalanced three-
phase PF (UTPF) using the Backward-Forward Sweep (BFS)
method, as described in [19], [20]. This approach initializes
with known voltage values while assuming zero branch cur-
rents and power losses. The backward sweep starts at the last
bus and calculates branch currents using Eq. (7), progressing
toward the transformer. Contributions from child branches and
end-user loads, computed using Eq. (8), are added to the parent



branches, where n, b, and k represent the branch, the child bus
connected to that branch, and the iteration, respectively.

Ik+1,t
n = Ik+1,t

b + Ik+1,t
n+1 (7)

Ik+1,t
b =

(
St
b

V k,t
b

)∗

(8)

The forward sweep propagates voltages from the trans-
former, updating the voltage at each child buses based on the
parent branch current and impedance as given by eq. (9). For
the series impedance matrix Zred, the reduced model capturing
neutral effect specific to European LV feeders is used [21].

V k+1,t
b = V k+1,t

b−1 + Zred,nI
k+1,t
n (9)

The process repeats until voltage mismatches at all buses
fall below a specified tolerance as given by eq. (10).

||V k+1,t
b | − |V k,t

b ||
Vnom

≤ tolerance (10)

This BFS UTPF is computed repeatedly for each time step
for each N scenarios.

C. Congestion analysis

Voltage and current levels across the entire feeder are
evaluated against predefined thresholds based on the EN 50160
standard or DSOs practices. Undervoltage (UV) congestion
is defined when the voltage drops below 0.9 p.u. over a
continuous 15-minute period or below 0.85 p.u. during in-
stantaneous variations. Overvoltage (OV) congestion occurs
when the voltage exceeds 1.1 p.u. over a continuous 15-minute
period or 1.15 p.u. during instantaneous variations. Overcur-
rent (OC) congestion is defined as the current exceeding the
branch’s ampacity for more than 15 minutes. It is important
to distinguish that constant thresholds apply to 15-minute
averaged values, while instantaneous thresholds correspond to
10-second intervals, which still both represent steady-state grid
operation rather than transient conditions.

III. CASE STUDY

A. Description

This subsection describes the case studies considered: first
the grid data and then the assumptions regarding load profiles.

Regarding grid data, the reduced IEEE European LV Test-
feeder is chosen for the benchmark grid case study [22]. This
grid is represented in fig. 2 with 55 end-users and their initial
phase connections. Each end-user is connected to the grid with
a maximum power capacity (in this case: ± 9.2 kVA). Voltage
at slack bus is set at 1.05 p.u.

Regarding load profiles, half of the end-users are assumed
to own LV assets providing flexibility, as well as solar panels.
These assets are distributed such that one out of every two
end-users is equipped.

Each end-user with flexible LV assets is assumed to con-
tribute up to 10 kW/20 kWh for FCR or aFRR services.

Fig. 2. Case study with IEEE European LV

Consequently, Pmax,b for FCR is set at 10 kW per end-user
with flexible assets. For aFRR, two approaches are analyzed:
(1) the limited reservoir approach where the maximum power
is constrained by the energy capacity of 20 kWh, limiting
Pafrrmax,b to 5 kW, and (2) the portfolio approach where
residential batteries can deliver maximum power regardless of
their individual energy capacity, setting Pafrrmax,b to 10 kW.
The case study examines the aFRR P4 product, where LV
assets inject power into the grid from 12:00 to 16:00 when
activated.

Non-flexible load profiles and PV production profiles are
derived from historical data, as described in the methodology.
The mean SLPt for non-flexible load profile is derived from
the 2023 Belgian synthetic load profiles, as published by the
system operator federation in [23]. Yearly energy is set to
3500kWh. The summer solstice is selected as the reference
day for sampling, ensuring adequate solar irradiance for PV
production. Each PV system is configured with an inverter
capacity of 5 kVA and a peak installed power of 5 kWp.

B. Numerical results - Instantaneous FCR model validation

This subsection outlines the rationale for adapting FCR load
profiles for constant and instantaneous congestion thresholds.

In this paper, frequency deviation is computed with an
ARMA model. It is again employed to predict frequency
behavior following an unexpected extreme event. The model’s
performance is validated against historical frequency data from
January 8, 2021, when the frequency dropped to 49.8 Hz and
benchmarked against a naive persistent model.

Figure 3 illustrates the frequency behavior post-drop, com-
paring historical data (blue and green) with the ARMA prob-
abilistic prediction (average in orange, 99.9% prediction inter-
val in light orange) and the naive persistent model (purple).
Blue data are used to entertain ARMA model and green to
data to validate it. Over a 15-minute period, ARMA achieves
a lower mean squared error (MSE) of 0.23966 compared to
0.29558 for the naive model, confirming ARMA’s superior pre-
dictive accuracy at a 10-second granularity, after the occurence
of an extreme frequency event.

The predicted average frequency returns to the historical
frequency within 6 minutes 10 seconds. This finding is critical,
as OC must last longer than 15 minutes to damage network
components like cables or transformers due to their thermal
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inertia. Furthermore, OV and UV thresholds are defined differ-
ently for constant and instantaneous voltage variations. These
results validate the use of 15-minute averaged frequency data
for assessing constant congestion thresholds, as frequency
is restored well within the averaging period. However, for
instantaneous congestion thresholds, relying solely on 15-
minute averages may overlook instantaneous frequency peaks
and FCR model is suggested to be adapted in the form
St
fcr,b = Pmax,b.

C. Numerical results - Impact of LV assets providing FCR

Fig. 4 shows the probability distribution of voltages [p.u.]
per phase for the most loaded bus (bus 80 connecting end-
user 36) on the summer solstice. The left panel represents the
scenario where LV assets providing FCR follow an averaged
probabilistic frequency signal for the 15-minutes analysis. In
this case, voltages remain below the constant OV congestion
threshold (red dotted line), indicating no congestion.

The right panel depicts the voltages per phase for the
instantaneous analysis. In this scenario, LV assets are modeled
to deliver maximum power as a response to an unexpected ex-
treme frequency event. Consequently to consider instantaneous
congestion, the OV congestion threshold is raised to 1.15
p.u. The figure shows that while voltages may momentarily
exceed the constant congestion threshold during the extreme
event (light dotted line), they remain below the instantaneous
congestion threshold (red dotted line). As a result, no instan-
taneous congestion occurs in this scenario.

Therefore, this result highlights the importance of using
consistent congestion thresholds to avoid overestimating the
congestion caused by FCR on the LV distribution grid. This
approach helps increase the access of LV flexibility for fre-
quency ancillary services.

D. Numerical results - Impact of LV assets providing aFRR

Congestion is absent in the limited reservoir approach but
exceeds 0% in the portfolio approach, with OV and OC
probabilities arising from P4 activation between 12:00 and
16:00. Congestion caused by limited reservoir approach for
this case study is therefore not represented.

Fig. 5 shows the congestion probability distribution for
branch 0 on the summer solstice when the LV assets are
providing aFRR for the P4 product. The left figure presents
the current probability distribution per phase and per time
step at branch 0. The right figure displays the two congestion
probability, OV and OC, occurring on the LV distribution grid.
The figure clearly shows a step increase in current yielded
between 12:00 and 16:00 corresponding to the modeling of
the activation of LV assets providing aFRR P4.

This raises important considerations for discussions between
DSOs and TSOs regarding activation approaches for LV
assets in aFRR. While LV assets offer significant potential
for frequency reserve participation, their activation must be
carefully managed to prevent congestion on the LV network.
In this case study, the limited reservoir approach results in no
congestion on the LV distribution grid, whereas the portfolio
approach leads to OV and OC congestion.

IV. CONCLUSION

In conclusion, this paper presents a methodology to model
the congestion caused by LV assets on the LV network when
providing FCR and aFRR services. The impact of FCR is
analyzed for both a constant case, with 15-minute granularity,
and an instantaneous case.

Three key results are highlighted:

• A probabilistic ARMA model for frequency ancillary
services more accurately predicts the output power of
LV assets providing FCR following an extreme frequency
event compared to a simple normal distribution.

• This model demonstrates that average frequency data can
be applied to study impact of constant congestion thresh-
olds, while extreme frequency events should only be
used with instantaneous congestion thresholds to prevent
overestimating FCR-induced LV congestion.

• Allowing aggregators to activate LV assets for aFRR
using a portfolio-based approach results in greater LV
congestion compared to a limited-reservoir approach.
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