

LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

Hierarchical Energy Sharing Management for a Renewable Energy Community with Heterogeneous End-users

Paper authors: Jamal Faraji, Zacharie De Grève, François Vallée

- **Renewable Energy Communities (RECs)** new **facilitating** resources for sustainable **energy transition**.
- The RECs are mainly **composed** by **shareholders and local end-users** (i.e. the community members), who have the right to **generate**, **store**, **and distribute energy locally** without resorting to the standard retail market, and own the energy assets individually or collectively.
- REC members are heterogonous in their motivations for participating in energy communities.
- Intrinsic values are among important motivations for prosumers to join RECs.
- In this paper, we integrate the heterogeneity of preferences of individuals, which roots in their intrinsic values, in energy sharing management of a centralized REC.

System overview

25-29 JUNE, 2023, BELGRADE, SERBIA

🕈 PowerTech

Belarade **2023**

- **Community manager:** Optimizes energy balance between community and upstream energy supplier. Facilitates energy sharing and internal billing mechanism within the energy community.
- **Philanthropic prosumers:** Follow altruistic behaviors by donating (all or some of) their surplus generation to the community manager.
- **Egoistic prosumers:** Follow self-interest behaviors to maximize their personal (financial) gains by selling their surplus energy to the community manager.
- Low-income consumers: They are identified by the community manager. Purchase electricity from the manager. Also, receive free-of-charge donated energy.
- Hedonic consumers: Follow pleasure and personal satisfaction behaviours. Purchase electricity from the community manager.

LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

Energy Sharing Management Problem

PowerTech Belgrade 2023 LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

Energy Sharing Management Problem

Energy Sharing Algorithms:

Energy Class 1: Supplier energy Energy Class 2: Donated energy Energy Class 3: Green energy

Algorithm 1 *Sharing donated energy by altruistic prosumers (class 2) with low-income consumers.*

- 1: Collect the first-stage scheduled power quantities from all end-users.
- 2: **|for** h = 1: H **do**

Calculate
$$\hat{p}_{h}^{dnt}$$
 as in (35); $\rightarrow \hat{p}_{h}^{dnt} = \sum_{m \in \mathcal{M}} p_{m,h}^{dnt}/card(Q)$

^{3:} Allocate
$$\hat{p}_h^{dnt}$$
 to q^{th} consumer: $\xi_h^b [p_{q,h}^b - \hat{p}_h^{dnt}]^+$;

3: | while
$$\hat{p}_h^{dnt} > p_{q,h}^b$$
 d

4: Distribute surplus donated energy with hedonic consumers having lower peak consumptions: $\xi_h^b(p_{k,h}^b + [p_{q,h}^b - \hat{p}_h^{dnt}]^-);$

- 5: end while
- 6: Revise the billing cost of consumers with allocated donated energy;
- 7: |end for

Algorithm 2 Sharing green energy by self-interested prosumers (class 3) with REC members.

- 1: Collect first-stage scheduled power quantities from all end-users.
- 2: $\int for h = 1: H do$
- 3: Calculate the total production of self-interested prosumers $(\sum p_{m,h}^s)$ and the total demand of end-users $(\sum p_{i,h}^b)$;
- 4: Equally share renewable energy with end-users who require electricity $(p_{i,h}^b \leftarrow \sum p_{m,h}^s)$;
- 5: $| \mathbf{if} \sum (p_{m,h}^s \leq \sum p_{i,h}^b) \mathbf{then} |$
 - Purchase deficit power from the supplier (class 1);
 - else

6:

7:

8:

9:

- Sell surplus power to the supplier (class 1);
- end if
- 10: **end for**

- The community consists of 6 prosumers and 6 consumers.

- Simulations are performed for two different days (high & lower PV generation days).

1) Donated energy assigned to each consumer for a (a) winter day; and (b) summer day:

2) Exchanged power with the upstream supplier for a (a) winter day; and (b) summer day:

Operation costs of end-users in the community:

& CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

PowerTech Belgrade 2023

Diff=Difference

Low-income consumers' cost savings:

		Operation Cost [€]					
User type		Winter Day			Summer Day		
and No.		Comm	Indv [14]	Diff	Comm	Indv [14]	Diff
Prosumers	P1	3.34	4.11	0.77	3.58	4.22	0.64
	P2	2.75	3.23	0.48	2.52	2.96	0.44
	P3	2.73	4.18	1.45	2.48	2.86	0.38
	P4	1.12	1.57	0.45	0.23	0.27	0.04
	P5	2.44	2.87	0.43	2.37	2.80	0.43
	P6	2.75	3.24	0.49	2.72	3.20	0.48
	P7	0.18	1.01	0.83	-2.19	-1.09	1.10
	P8	0.02	0.60	0.58	-1.71	-0.89	0.82
	P9	-1.83	-1.10	0.73	-3.41	-2.43	0.98
	P10	-0.58	-0.08	0.50	-1.02	-0.30	0.72
	P11	-1.45	-0.74	0.71	-4.67	-3.55	1.12
	P12	2.15	2.66	0.51	0.43	1.116	0.68
Consumers	C1	3.83	4.49	0.66	3.08	5.57	2.49
	C2	3.40	3.64	0.24	2.46	4.85	2.39
	C3	4.74	5.47	0.73	3.97	6.92	2.95
	C4	5.60	6.67	1.07	4.69	6.75	2.06
	C5	2.57	3.04	0.47	2.36	3.34	0.98
	C6	3.90	4.55	0.65	3.15	4.62	1.47
Total		37.66	49.41	11.75	21.04	41.21	20.17
Acronyms: Comm=Community-based, Indv=Individual-based,							

		Operatio			
	Consumer	Before	After		
Day	No	receiving	receiving	Saving	
	NO.	donated	donated		
		energy	energy		
	C1	4.76	3.83	0.93	
iter iv	C2	4.17	3.40	0.77	
Vin da	C3	5.77	4.74	1.03	
1	Total	14.70	11.97	2.73	
	C1	4.79	3.08	1.71	
	C2	4.27	2.46	1.81	
er	C3	6.02	3.97	2.05	
nm lay	C4	4.79	4.69	0.10	
un q	C5	2.81	2.36	0.45	
σ,	C6	3.97	3.15	0.82	
	Total	26.65	19.71	6.94	

 Monetary benefits from participating in communitybased energy exchanges for all members.

 Additional cost reduction for low-income (& hedonic) consumers, enjoying donated energy.

- All members financially benefited from participating in the REC.
- Low-income (& hedonic) consumers received additional cost reduction from donated energy by philanthropic prosumers.
- Recognizing the contributions of philanthropic prosumers towards the savings of anonymous lowincome (& hedonic) consumers (Promotes the social and environmental values that underlie the community energy concept).
- Decreases reliance on external energy suppliers, particularly during peak hours.

PowerTech Belgrade 2023

LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA

Contact Information:

Jamal Faraji University of Mons (Belgium) jamal.faraji@umons.ac.be

LEADING INNOVATIONS FOR RESILIENT & CARBON-NEUTRAL POWER SYSTEMS 25-29 JUNE, 2023, BELGRADE, SERBIA