The Effect of Future Financial Benefits on PV Adoption - Evidence from Belgium

Justus Böning Kenneth Bruninx Marten Ovaere Guido Pepermans Erik Delarue¹

FSR Climate Conference, 27.11.2023

KU LEUVEN

¹J.Böning, G.Pepermans & E.Delarue: KU Leuven; K.Bruninx: TU Delft; M.Ovaere: Ghent Univers<mark>ity</mark>

Overview

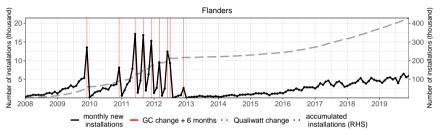
- Motivation & Introduction
- 2 Empirical Methodology
- O Data
- 4 Results
- Conclusion

• Greening the residential sector is crucial for the energy transition: e.g. Zero-emission building stock by 2050, 42.5 percent RES energy by 2030, 100 percent new zero-emissions vehicles by 2035.

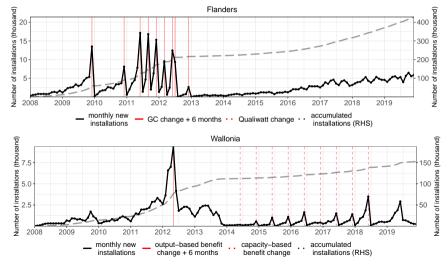
- Greening the residential sector is crucial for the energy transition: e.g.
 Zero-emission building stock by 2050, 42.5 percent RES energy by 2030, 100 percent new zero-emissions vehicles by 2035.
- Immense investments in the residential sector are required, European Commission estimates annually €151-212 billion in 2021-2030 and €137-192 billion in 2031-2050 (€-2015) (EC, 2019).

- Greening the residential sector is crucial for the energy transition: e.g. Zero-emission building stock by 2050, 42.5 percent RES energy by 2030, 100 percent new zero-emissions vehicles by 2035.
- Immense investments in the residential sector are required, European Commission estimates annually €151-212 billion in 2021-2030 and €137-192 billion in 2031-2050 (€-2015) (EC, 2019).
- Policy makers often opt for incentive schemes as second-best solution (instead of an emission tax) to foster energy-related investments of households.

- Greening the residential sector is crucial for the energy transition: e.g. Zero-emission building stock by 2050, 42.5 percent RES energy by 2030, 100 percent new zero-emissions vehicles by 2035.
- Immense investments in the residential sector are required, European Commission estimates annually €151-212 billion in 2021-2030 and €137-192 billion in 2031-2050 (€-2015) (EC, 2019).
- Policy makers often opt for incentive schemes as second-best solution (instead of an emission tax) to foster energy-related investments of households.
- Often, these incentives contain future financial benefits, i.e. benefits after the time of investment.

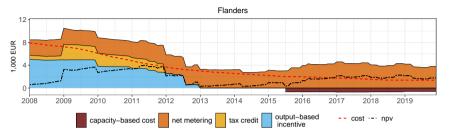


Energy-related technology adoption & future benefits, monthly photovoltaic (PV) installations

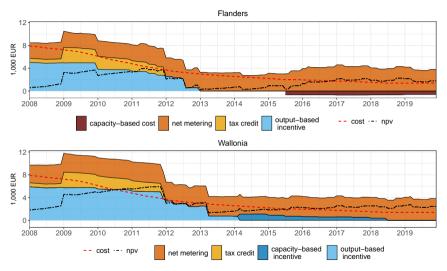

4/16

Energy-related technology adoption & future benefits, monthly photovoltaic (PV) installations

Energy-related technology adoption & future benefits, monthly photovoltaic (PV) installations



Present value of available incentive schemes per kW


5/16

Present value of available incentive schemes per kW

Present value of available incentive schemes per kW

KU LEUVEN

6/16

²Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019), etc.

³Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

• Focus: incentive schemes with future financial benefits on energy-related technology uptake, i.e. photovolatic (PV) adoption in Belgium.

²Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019), etc.

³Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

- Focus: incentive schemes with future financial benefits on energy-related technology uptake, i.e. photovolatic (PV) adoption in Belgium.
- The literature finds a positive effects of (early) adoption patterns to financial benefits for PV in the residential sector but the focus is one specific incentive scheme or difference between upfront vs. future benefits:

²Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019), etc.

³Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

- Focus: incentive schemes with future financial benefits on energy-related technology uptake, i.e. photovolatic (PV) adoption in Belgium.
- The literature finds a **positive effects** of (early) **adoption patterns to financial benefits** for PV in the residential sector but the focus is one specific incentive scheme or difference between upfront vs. future benefits:
 - ▶ Effectiveness (reduced-form): upfront rebates , feed-in-tariffs, electricity prices.²
 - ► **Cost-efficiency (structural models)**: capacity-based upfront vs. output-based, optimal incentive design.³

²Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019), etc.

³Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

- Focus: incentive schemes with future financial benefits on energy-related technology uptake, i.e. photovolatic (PV) adoption in Belgium.
- The literature finds a **positive effects** of (early) **adoption patterns to financial benefits** for PV in the residential sector but the focus is one specific incentive scheme or difference between upfront vs. future benefits:
 - ► Effectiveness (reduced-form): upfront rebates , feed-in-tariffs, electricity prices.²
 - ► **Cost-efficiency (structural models)**: capacity-based upfront vs. output-based, optimal incentive design.³
- How do higher future financial benefits affect PV adoption patterns (number and average size) (in a month & municipality) and how effective are different incentive schemes?

²Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019), etc.

³Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

• Output-based: Fixed yearly compensation (MWh) of produced electricity for a guaranteed time span (Green certificate scheme) (2006-2014).

- Output-based: Fixed yearly compensation (MWh) of produced electricity for a guaranteed time span (Green certificate scheme) (2006-2014).
- Capacity-based: Yearly compensation (readjusted, 5 year span) for each kW of installed capacity in Wallonia (up to 3kW; 2014-2018).

- Output-based: Fixed yearly compensation (MWh) of produced electricity for a guaranteed time span (Green certificate scheme) (2006-2014).
- Capacity-based: Yearly compensation (readjusted, 5 year span) for each kW of installed capacity in Wallonia (up to 3kW; 2014-2018).
- Net-metering cost saving: Grid off-take (excess consumption) and injection (excess production) are netted on an annual basis, varies by regional electricity price (active for the whole sample period).

- Output-based: Fixed yearly compensation (MWh) of produced electricity for a guaranteed time span (Green certificate scheme) (2006-2014).
- Capacity-based: Yearly compensation (readjusted, 5 year span) for each kW of installed capacity in Wallonia (up to 3kW; 2014-2018).
- **Net-metering cost saving:** Grid off-take (excess consumption) and injection (excess production) are netted on an annual basis, varies by regional electricity price (active for the whole sample period).
- Capacity-based cost: yearly fee per kW of capacity in Flanders (since 2015).

- Output-based: Fixed yearly compensation (MWh) of produced electricity for a guaranteed time span (Green certificate scheme) (2006-2014).
- Capacity-based: Yearly compensation (readjusted, 5 year span) for each kW of installed capacity in Wallonia (up to 3kW; 2014-2018).
- Net-metering cost saving: Grid off-take (excess consumption) and injection (excess production) are netted on an annual basis, varies by regional electricity price (active for the whole sample period).
- Capacity-based cost: yearly fee per kW of capacity in Flanders (since 2015).
- \rightarrow We calculate the present value for the separate incentive schemes in each month of investment and assess their effectiveness in a statistical model.

8/16

• Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.

8/16

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$
(1)

$$PV_{it} = \exp\left[\sum_{j \in J} \boldsymbol{\beta^{j}} \times \boldsymbol{b_{rt}^{j}} + \boldsymbol{\gamma} \times \boldsymbol{X_{it}} + \mu_{i} + \psi_{t}\right] \cdot \boldsymbol{u_{it}} \qquad j \in \{yel, nm, cap, capcost\}$$
 (2)

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times X_{it} + \mu_i + \psi_t] \cdot u_{it}$$
(1)

$$PV_{it} = \exp\left[\sum_{j \in J} \boldsymbol{\beta^{j}} \times \boldsymbol{b_{rt}^{j}} + \boldsymbol{\gamma} \times \boldsymbol{X_{it}} + \mu_{i} + \psi_{t}\right] \cdot \boldsymbol{u_{it}} \qquad j \in \{yel, nm, cap, capcost\}$$
 (2)

• Identification of benefit coefficients:

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times X_{it} + \mu_i + \psi_t] \cdot u_{it}$$
(1)

$$PV_{it} = \exp\left[\sum_{j \in J} \beta^{j} \times b_{rt}^{j} + \gamma \times \mathbf{X}_{it} + \mu_{i} + \psi_{t}\right] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
 (2)

- Identification of benefit coefficients:
 - ▶ Output-based benefits: monthly changes in prices and payback period (pre-determined).

8/16

ning et al. FSR Climate Conference, 27.11.2023

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times X_{it} + \mu_i + \psi_t] \cdot u_{it}$$
(1)

$$PV_{it} = \exp\left[\sum_{i \in J} \beta^{j} \times b_{rt}^{j} + \gamma \times \mathbf{X}_{it} + \mu_{i} + \psi_{t}\right] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
 (2)

- Identification of benefit coefficients:
 - Output-based benefits: monthly changes in prices and payback period (pre-determined).
 - Capacity-based benefits/cost: monthly changes in price/cost based on past observations.

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times X_{it} + \mu_i + \psi_t] \cdot u_{it}$$
(1)

$$PV_{it} = \exp\left[\sum_{i \in J} \beta^{j} \times b_{rt}^{j} + \gamma \times \mathbf{X}_{it} + \mu_{i} + \psi_{t}\right] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
 (2)

- Identification of benefit coefficients:
 - Output-based benefits: monthly changes in prices and payback period (pre-determined).
 - ▶ Capacity-based benefits/cost: monthly changes in price/cost based on past observations.
 - ► Cost saving-based benefits: **monthly changes** in regional **electricity prices** but possibly endogenous network tariff adjustments.

- Regress PV adoption (PV count or average capacity size) on net benefits/each benefit separate, control variables, municipality and time fixed effects.
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\beta \times \log(b_{rt}^{net}) + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it}$$
(1)

$$PV_{it} = \exp\left[\sum_{j \in J} \beta^{j} \times b_{rt}^{j} + \gamma \times \mathbf{X}_{it} + \mu_{i} + \psi_{t}\right] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
 (2)

- Identification of benefit coefficients:
 - Output-based benefits: monthly changes in prices and payback period (pre-determined).
 - ► Capacity-based benefits/cost: **monthly changes in price/cost** based on past observations.
 - Cost saving-based benefits: monthly changes in regional electricity prices but possibly endogenous network tariff adjustments. → for robustness, we use an instrumental variable (IV) approach (Gillingham and Tsvetanov, 2019). Instrument: network tariff-free electricity prices.

Data

Data

• Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~**80,000 observations**.

Data

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~**80,000 observations**.
- **Dependent Variable** variation by month and zip: number and average capacity size of new PV installations in the residential sector ($\leq 10 \text{kWp}$) (source: VEKA, SPW)

dep vars summary

Data

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~**80,000 observations**.
- **Dependent Variable** *variation by month and zip*: number and average capacity size of new PV installations in the residential sector (≤10kWp) (source: VEKA, SPW)
- Main explanatory variables variation by month and region: discounted net-benefits and discounted separate benefits per kW (source: market reports VREG & CWaPE).

Data

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: \sim 580.000 installations and \sim 80.000 observations.
- Dependent Variable variation by month and zip: number and average capacity size of new PV installations in the residential sector (≤10kWp) (source: VEKA, SPW) dep vars summary
- Main explanatory variables variation by month and region: discounted net-benefits and discounted separate benefits per kW (source: market reports VREG & CWaPE). equations
- Control variables variation by year and zip: median income deflated (source: statbel), sociodemographics and building characteristics (source: Walstat/provincies.incijfers)

Results Number of Installations

Results Number of Installations

	Aggregat	e benefits	Sep. benefits	Sep. ben. (IV)
Model:	(1)	(2)	(3)	(4)
Net benefits (log)	6.83*** (0.085)			
Net benefits (thous)		1.05*** (0.019)		
Output-based incentive			1.34*** (0.025)	1.18*** (0.023)
Net metering			0.84*** (0.035)	0.68*** (0.041)
Capacity-based cost			-1.94*** (0.092)	-1.20*** (0.094)
Capacity-based incentive			1.45*** (0.042)	1.25*** (0.045)
Zip-, Month-, Year-fixed eff.:	Yes	Yes	Yes	Yes
Additional Control Variables:	Yes	Yes	Yes	Yes
Observations	78,048	78,048	78,048	78,048

Standard-errors in parentheses, Signif. Codes: ***: 0.01, **: 0.05, *: 0.1, obs. at monthly municipality level. Time span 2008-2019. Standard-errors for PPMLE (1)-(3) clustered at the municipality-level, for IV estimates (4) bootstrapped. IV estimates contains sub-regional variation in capacity-based incentive/cost.

• **High sensitivity** of future benefits on PV adoption in the residential sector: A 1% increase increases PV installations by around 7%.

- **High sensitivity** of future benefits on PV adoption in the residential sector: A 1% increase increases PV installations by around 7%.
- Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering.

- **High sensitivity** of future benefits on PV adoption in the residential sector: A 1% increase increases PV installations by around 7%.
- Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering.
- Different effectiveness could be due to **differences in the benefit designs**, i.e.more **uncertain**, less **direct** and less **salient** incentive schemes are less effective.

- **High sensitivity** of future benefits on PV adoption in the residential sector: A 1% increase increases PV installations by around 7%.
- Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering.
- Different effectiveness could be due to **differences in the benefit designs**, i.e.more **uncertain**, less **direct** and less **salient** incentive schemes are less effective.
- Accounting for short-term dynamics or changes in the assumed discount rate (robustness): short-term.dynamics discount rates

- **High sensitivity** of future benefits on PV adoption in the residential sector: A 1% increase increases PV installations by around 7%.
- Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering.
- Different effectiveness could be due to **differences in the benefit designs**, i.e.more **uncertain**, less **direct** and less **salient** incentive schemes are less effective.
- Accounting for short-term dynamics or changes in the assumed discount rate (robustness): short-term.dynamics discount rates
 - ▶ Results generally confirm lower effectiveness of cost saving-based benefits.

Böning et al. FSR Climate Conference, 27.11.2023 11/16

- **High sensitivity** of future benefits on PV adoption in the residential sector: A 1% increase increases PV installations by around 7%.
- Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering.
- Different effectiveness could be due to **differences in the benefit designs**, i.e.more **uncertain**, less **direct** and less **salient** incentive schemes are less effective.
- Accounting for short-term dynamics or changes in the assumed discount rate (robustness): short-term dynamics discount rates
 - Results generally confirm lower effectiveness of cost saving-based benefits.
 - ▶ Declining difference in coefficients between net metering and capacity-based benefits suggests importance of salience as major determinant.

Results on Average Capacity Size Installations

Results on Average Capacity Size Installations

	Aggregat	e benefits	Separate benefits	Separate benefits (IV)
Model:	(2)	(3)	(4)	(5)
Net benefits (log)	1.40*** (0.048)			
Net benefits		0.344*** (0.010)		
Output-based incentive			0.390*** (0.012)	0.365*** (0.012)
Net metering			-0.113*** (0.022)	-0.112*** (0.030)
Capacity-based cost			-0.310*** (0.044)	-0.253*** (0.047)
Capacity-based incentive			-0.144*** <i>(0.027)</i>	-0.201*** <i>(0.036)</i>
Zip-, Month-, Year-fixed effects:	Yes	Yes	Yes	Yes
Additional Control Variables:		Yes	Yes	Yes
Observations	78,048	78,048	78,048	78,048

Standard-errors in parentheses, Signif. Codes: ***: 0.01, **: 0.05, *: 0.1, obs. at monthly municipality level. Time span 2008-2019. Standard-errors for PPMLE (1)-(3) clustered at the municipality-level, for IV estimates (4) bootstraped estimates contains sub-regional variation in capacity-based incentive/cost. Values in thous, EUR unless specified

• Meaningful but smaller **effect of benefits on average capacity size**: A 1% increase in benefits increases average capacity by 1.4%.

- Meaningful but smaller **effect of benefits on average capacity size**: A 1% increase in benefits increases average capacity by 1.4%.
- Output-based incentives are solely responsible for overall **positive effect** on capacity size.

- Meaningful but smaller **effect of benefits on average capacity size**: A 1% increase in benefits increases average capacity by 1.4%.
- Output-based incentives are solely responsible for overall positive effect on capacity size.
- Additional compensation for installed capacity increases average new installed capacity (similar for capacity-based cost).

- Meaningful but smaller **effect of benefits on average capacity size**: A 1% increase in benefits increases average capacity by 1.4%.
- Output-based incentives are solely responsible for overall positive effect on capacity size.
- Additional compensation for installed capacity increases average new installed capacity (similar for capacity-based cost).
- Thresholds on compensation for installed capacity reduce average capacity (3kW threshold on capacity-based incentive scheme and zero net electricity consumption).

- Meaningful but smaller effect of benefits on average capacity size: A 1% increase in benefits increases average capacity by 1.4%.
- Output-based incentives are solely responsible for overall positive effect on capacity size.
- Additional compensation for installed capacity increases average new installed capacity (similar for capacity-based cost).
- Thresholds on compensation for installed capacity reduce average capacity (3kW threshold on capacity-based incentive scheme and zero net electricity consumption).
- → Incentive schemes also affect the size of new installations.

 Main contribution: estimation of future benefits on PV adoption and the direct comparison of the most prominent benefit schemes for the residential sector via reduced-form.

- Main contribution: estimation of future benefits on PV adoption and the direct comparison of the most prominent benefit schemes for the residential sector via reduced-form.
- Households are sensitive to incentive schemes with future financial benefits concerning PV uptake and size.

- Main contribution: estimation of future benefits on PV adoption and the direct comparison of the most prominent benefit schemes for the residential sector via reduced-form.
- Households are sensitive to incentive schemes with future financial benefits concerning PV uptake and size.
- → Not all incentive schemes with future financial benefits are similarly effective: The benefit design is an important determinant concerning the overall uptake of energy-related technology adoption.

- Main contribution: estimation of future benefits on PV adoption and the direct comparison of the most prominent benefit schemes for the residential sector via reduced-form.
- Households are sensitive to incentive schemes with future financial benefits concerning PV uptake and size.
- → Not all incentive schemes with future financial benefits are similarly effective: The benefit design is an important determinant concerning the overall uptake of energy-related technology adoption.
- → Possible room for improvement for policy makers: more certain, more direct and salient incentive schemes increase energy-related technology uptake.

- Main contribution: estimation of future benefits on PV adoption and the direct comparison of the most prominent benefit schemes for the residential sector via reduced-form.
- Households are sensitive to incentive schemes with future financial benefits concerning PV uptake and size.
- → Not all incentive schemes with future financial benefits are similarly effective: The benefit design is an important determinant concerning the overall uptake of energy-related technology adoption.
- → Possible room for improvement for policy makers: more certain, more direct and salient incentive schemes increase energy-related technology uptake.
- ightarrow Possibility of improving the modelling of energy related investment decisions and implications for energy system modelling.

KU LEUVEN

Thank you for listening!

KU Leuven - Energy Systems Integration & Modelling (ESIM) Research Group justus.boening@kuleuven.be

Böning et al. FSR Climate Conference, 27.11.2023 15/16

References

- Burr, C. (2016). Subsidies and investments in the solar power market. Working Paper.
- De Groote, O. and Verboven, F. (2019). Subsidies and time discounting in new technology adoption: Evidence from solar photovoltaic systems. *American Economic Review*, 109(6):2137–2172.
- EC (2019). Commission staff working document impact assessment, stepping up europeâs 2030 climate ambition, investing in a climate-neutral future for the benefit of our people. Technical report, European Commission.
- Feger, F., Pavanini, N., and Radulescu, D. (2022). Welfare and redistribution in residential electricity markets with solar power. *The Review of Economic Studies*, 89(6):3267–3302.
- Gautier, A. and Jacqmin, J. (2019). PV adoption: the role of distribution tariffs under net metering. *Journal of Regulatory Economics*, 57(1):53–73.
- Germeshausen, R. (2018). Effects of attribute-based regulation on technology adoption â the case of feed-in tariffs for solar photovoltaic. SSRN Electronic Journal.
- Gillingham, K. and Tsvetanov, T. (2019). Hurdles and steps: Estimating demand for solar photovoltaics. *Quantitative Economics*, 10(1):275–310.
- Hughes, J. E. and Podolefsky, M. (2015). Getting green with solar subsidies: Evidence from the california solar initiative. Journal of the Association of Environmental and Resource Economists, 2(2):235–275.
- Langer, A. and Lemoine, D. (2022). Designing dynamic subsidies to spur adoption of new technologies. *Journal of the Association of Environmental and Resource Economists*, 9(6):1197–1234.

Böning et al. FSR Climate Conference, 27.11.2023 16/16

KU LEUVEN

Present Value Equations

$$b_{i,s,r,t}^{tc}(cap) = \sum_{t=1}^{4} \beta^{12t} \ taxcut_t(cap)$$
(3)

$$b_{i,r,t}^{gc}(cap) = \beta \cdot \left(1 - (\beta^{gc})^{T_{r,t}^{gc}}\right) \left(1 - \beta^{gc}\right)^{-1} \cdot n_{r,t}^{gc} \cdot p_{r,t}^{gc} \cdot \bar{y}(cap)/12 \tag{4}$$

$$b_{i,r,t}^{nm}(cap) = \beta \cdot \left(1 - (\beta^{nm})^{T^{lt}}\right) \left(1 - \beta^{nm}\right)^{-1} \cdot p_{s,r,m}^{el} \cdot \bar{y}(cap)/12 \tag{5}$$

$$b_{i,r,t}^{qw}(cap) = \beta \cdot \left(1 - (\beta^{qw})^{T^{qw}}\right) \left(1 - \beta^{qw}\right)^{-1} \cdot p_{r,m}^{qw} \cdot \min(cap, 3kW)$$
(6)

$$b_{i,r,t}^{pr}(cap) = \beta \cdot \left(1 - (\beta^{pr})^{T^{h}}\right) \left(1 - \beta^{pr}\right)^{-1} \cdot p_{s,r,m}^{pr} \cdot AC^{sh} \cdot cap^{p} \tag{7}$$

Explanatory Variables - Summary Statistics 2

Variable	Mean	SD	Min	Median	Max	Observation
Benefit Variables						
net benefits (log)	8.48	0.42	7.72	8.32	9.12	70,308
net benefits (thousand)	5.25	2.23	2.25	4.09	9.15	70,308
GC (thousand)	1.95	2.37	0.00	0.00	5.89	70,308
net metering (thousand)	3.38	0.48	2.55	3.31	4.60	70,308
prosumer tariff (thousand)	0.18	0.33	-0.00	0.00	0.86	70,308
Qualiwatt (thousand)	0.11	0.28	0.00	0.00	1.11	70,308
Sociodemographics						
households (log)	8.49	0.86	3.50	8.50	12.37	6,696
net med income per decl. defl. (log)	10.09	0.11	9.72	10.11	10.44	6,516
population density (log)	5.63	1.00	3.18	5.69	8.17	6,696
age:below 18 (sh.)	0.21	0.02	0.10	0.20	0.29	6,696
age:18-49 (sh.)	0.41	0.02	0.24	0.41	0.51	6,694
age:above 64 (sh.)	0.18	0.03	0.10	0.18	0.40	6,694
age:50-64 (sh.)	0.20	0.02	0.13	0.20	0.32	6,696
non-nationals (sh.)	0.06	0.06	0.00	0.04	0.52	6,696
nationals (sh.)	0.94	0.06	0.48	0.96	1.00	6,696
female (sh.)	0.51	0.01	0.40	0.51	0.54	6,696
male (sh.) ´	0.49	0.01	0.46	0.49	0.60	6, <mark>696 LEUVE</mark>

Explanatory Variables - Summary Statistics 2

Variable	Mean	SD	Min	Median	Max	Observations
Household Characteristics						
hh single (sh.)	0.24	0.08	0.10	0.22	0.55	6,684
hh single parent (sh.)	0.08	0.03	0.03	0.06	0.18	6,684
hh couple /w children (sh.)	0.36	0.06	0.16	0.37	0.52	6,684
hh couple w/o children (sh.)	0.32	0.08	0.16	0.34	0.51	6,684
Building Characteristics						
house age:until 1981 (sh.)	0.73	0.08	0.46	0.72	0.95	6,696
house age:after 1981 (sh.)	0.27	0.08	0.05	0.28	0.54	6,696
house type:apartments (sh.)	0.12	0.11	0.00	0.09	0.79	6,696
house type:single fam closed (sh.)	0.19	0.13	0.01	0.15	0.71	6,696
house type:single fam semi-detached (sh.)	0.25	0.07	0.03	0.25	0.42	6,696
house type:single fam open (sh.)	0.45	0.19	0.01	0.47	0.85	6,696

Dependent Variable: PV installations

Region	zip	Total	Obs.	zerosh.		PV i	nst	allati	ons/ob	5.	mean	сар.	(KWp)/obs.
		PV	(thous.)	/obs.	mea	n me	ed-	sd	min	max	mean	sd	min	max
		(thous.)				iar	n							
Flanders	300	428,175	43,200	0.13	9.9	L 5.0	00	16	0	336	4.49	1.25	0.54	10.00
Wallonia	258	152,078	37,152	0.30	4.0	2.0	00	8	0	278	4.96	1.36	0.75	10.00
Total	558	580,253	80,352	0.21	7.2	2 3.0	00	13	0	336	4.68	1.32	0.54	10.00

Robustness: Accounting for short-term dynamics

	Numb	er of PV insta	llations	Average new installed capacity					
	Agg. ben.	Sep. ben.	Sep. ben. (IV)	Agg. ben.	Sep. ben.	Sep. ben. (IV)			
Model:	(1)	(2)	(3)	(4)	(5)	(6)			
Net benefits	1.30*** (0.018)			0.368*** (0.012)					
Capacity-based cost	, ,	-0.407*** (0.089)	-0.665*** (0.077)	,	-0.312*** (0.049)	-0.251*** (0.052)			
Output-based incentive		1.30*** (0.027)	1.26** [*] (0.024)		0.429*** (0.015)	0.406*** (0.015)			
Net metering		0.066 (0.044)	0.796*** (0.056)		-0.164*** (0.027)	-0.157*** (0.042)			
Capacity-based incentive		0.724*** (0.047)	0.910*** (0.046)		-0.151*** (0.030)	-0.186*** (0.042)			
Controls, time-&zip-fixed effects: Observations	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775			

Robustness: Different discount rates

		Standard	PPMLE		IV Controlfunction					
	0% DR	3% DR	7% DR	15%	0% DR	3% DR	7% DR	15%		
		(base-		DR		(base-		DR		
Model:	(1)	line) (2)	(3)	(4)	(5)	line)	(7)	(8)		
Model.	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Capacity-based cost	-0.943***	-1.64***	-2.85***	-5.93***	-0.551***	-1.01***	-1.77***	-3.58***		
	(0.056)	(0.077)	(0.114)	(0.211)	(0.055)	(0.079)	(0.119)	(0.218)		
Output-based incentive	1.04***	1.34***	1.78***	2.73***	0.935***	1.18***	1.52***	2.23***		
	(0.020)	(0.025)	(0.032)	(0.051)	(0.018)	(0.023)	(0.029)	(0.044)		
Net metering	0.583***	0.836***	1.26***	2.37***	0.441***	0.679***	1.07***	2.01***		
	(0.027)	(0.035)	(0.049)	(0.082)	(0.030)	(0.041)	(0.059)	(0.103)		
Capacity-based incentive	1.17***	1.45***	1.81***	2.47***	0.961***	1.25***	1.59***	2.15***		
	(0.038)	(0.042)	(0.048)	(0.060)	(0.040)	(0.045)	(0.052)	(0.066)		
Controls, time-&zip-fixed effects:	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Observations:	78,048	78,048	78,048	78,048	78,048	78,048	78,048	78,048		

