The Effect of Future Financial Benefits on PV Adoption -Evidence from Belgium

Justus Böning

Kenneth Bruninx Marten Ovaere Guido Pepermans Erik Delarue¹

EMEE Workshop, 25.01.2024

¹J.Böning, G.Pepermans & E.Delarue: KU Leuven; K.Bruninx: TU Delft; M.Ovaere: Ghent University

Böning et a

• Policy makers may opt for **incentive schemes** as second-best solution (instead of an emission tax) to **foster energy-related investments of households**.

- Policy makers may opt for **incentive schemes** as second-best solution (instead of an emission tax) to **foster energy-related investments of households**.
- Often, these incentives contain **future financial benefits**, i.e. benefits **after the time of investment**.

- Policy makers may opt for **incentive schemes** as second-best solution (instead of an emission tax) to **foster energy-related investments of households**.
- Often, these incentives contain **future financial benefits**, i.e. benefits **after the time of investment**.
- Policy makers choose the design of these incentive schemes → schemes can be quite different in their setup.

- Policy makers may opt for **incentive schemes** as second-best solution (instead of an emission tax) to **foster energy-related investments of households**.
- Often, these incentives contain **future financial benefits**, i.e. benefits **after the time of investment**.
- Policy makers choose the design of these incentive schemes → schemes can be quite different in their setup.
- In this paper, we take a closer look at **different incentive schemes** with future financial benefits in the context of **PV adoption in the residential sector** in Belgium.

Monthly PV installations across the Belgian regions

Monthly PV installations across the Belgian regions

Monthly PV installations across the Belgian regions

²Effectiveness (reduced-form): Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019)...
 ³Cost-efficiency (structural models): Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

• The literature finds a **positive effects** of **financial benefits** on PV adoption in the residential sector mostly for one **specific incentive scheme**² or differences between upfront vs. future benefits ³.

 ²Effectiveness (reduced-form): Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019)...
 ³Cost-efficiency (structural models): Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

- The literature finds a **positive effects** of **financial benefits** on PV adoption in the residential sector mostly for one **specific incentive scheme**² or differences between upfront vs. future benefits ³.
- How do **higher future financial benefits** affect **PV adoption patterns** (number and average size) (in a month & municipality)?

²Effectiveness (reduced-form): Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019)...
 ³Cost-efficiency (structural models): Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

- The literature finds a **positive effects** of **financial benefits** on PV adoption in the residential sector mostly for one **specific incentive scheme**² or differences between upfront vs. future benefits ³.
- How do **higher future financial benefits** affect **PV adoption patterns** (number and average size) (in a month & municipality)?
- How effective are different incentive schemes with future financial benefits?

 ²Effectiveness (reduced-form): Hughes and Podolefsky (2015), Germeshausen (2018), Gautier and Jacqmin (2019)...
 ³Cost-efficiency (structural models): Burr (2016), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger et al. (2022)

In Belgium, three different incentive schemes were implemented in the past:

(1) **Output-based**: Fixed yearly compensation (MWh) **of produced electricity** for a guaranteed time span (Green certificate scheme) (2006-2014).

- (1) **Output-based**: Fixed yearly compensation (MWh) **of produced electricity** for a guaranteed time span (Green certificate scheme) (2006-2014).
- (2.1) **Capacity-based**: Yearly compensation (readjusted, 5 year span) for each kW of installed capacity in Wallonia (up to 3kW; 2014-2018).

- (1) **Output-based**: Fixed yearly compensation (MWh) **of produced electricity** for a guaranteed time span (Green certificate scheme) (2006-2014).
- (2.1) **Capacity-based**: Yearly compensation (readjusted, 5 year span) for each kW of installed capacity in Wallonia (up to 3kW; 2014-2018).
- (2.2) Capacity-based cost: yearly fee per kW of capacity in Flanders (since 2015).

- (1) **Output-based**: Fixed yearly compensation (MWh) **of produced electricity** for a guaranteed time span (Green certificate scheme) (2006-2014).
- (2.1) **Capacity-based**: Yearly compensation (readjusted, 5 year span) for each kW **of installed capacity** in Wallonia (up to 3kW; 2014-2018).
- (2.2) Capacity-based cost: yearly fee per kW of capacity in Flanders (since 2015).
 - (3) **Net-metering/cost-saving:** Grid off-take (excess consumption) and injection (excess production) are netted on an annual basis, varies by regional electricity price (active for the whole sample period).

- (1) **Output-based**: Fixed yearly compensation (MWh) **of produced electricity** for a guaranteed time span (Green certificate scheme) (2006-2014).
- (2.1) **Capacity-based**: Yearly compensation (readjusted, 5 year span) for each kW **of installed capacity** in Wallonia (up to 3kW; 2014-2018).
- (2.2) Capacity-based cost: yearly fee per kW of capacity in Flanders (since 2015).
 - (3) **Net-metering/cost-saving:** Grid off-take (excess consumption) and injection (excess production) are netted on an annual basis, varies by regional electricity price (active for the whole sample period).
 - \rightarrow We calculate the present value for the separate incentive schemes in each month of investment and assess their effectiveness in a statistical model.

Present value of available incentive schemes per kW

Present value of available incentive schemes per kW

Present value of available incentive schemes per kW

 Regress PV adoption (PV count or average capacity size) on discounted benefits of different incentive schemes, control variables, municipality and time fixed effects → around 80,000 observations at the municipality-month-level (2009-2018). variables

- Regress PV adoption (PV count or average capacity size) on discounted benefits of different incentive schemes, control variables, municipality and time fixed effects → around 80,000 observations at the municipality-month-level (2009-2018). variables
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

- Regress PV adoption (PV count or average capacity size) on discounted benefits of different incentive schemes, control variables, municipality and time fixed effects → around 80,000 observations at the municipality-month-level (2009-2018). variables
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\sum_{j \in J} \beta^j \times b^j_{rt} + \gamma \times X_{it} + \mu_i + \psi_t] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
(1)

- Regress PV adoption (PV count or average capacity size) on discounted benefits of different incentive schemes, control variables, municipality and time fixed effects → around 80,000 observations at the municipality-month-level (2009-2018). variables
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$\mathsf{PV}_{it} = \exp[\sum_{j \in J} \beta^j \times b_{rt}^j + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
(1)

• Identification of benefit coefficients:

- Regress PV adoption (PV count or average capacity size) on discounted benefits of different incentive schemes, control variables, municipality and time fixed effects → around 80,000 observations at the municipality-month-level (2009-2018). variables
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\sum_{j \in J} \beta^{j} \times b_{rt}^{j} + \gamma \times X_{it} + \mu_{i} + \psi_{t}] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
(1)

- **Identification** of benefit coefficients:
 - monthly changes in prices and payback period

- Regress PV adoption (PV count or average capacity size) on discounted benefits of different incentive schemes, control variables, municipality and time fixed effects → around 80,000 observations at the municipality-month-level (2009-2018). variables
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$PV_{it} = \exp[\sum_{j \in J} \beta^j \times b_{rt}^j + \gamma \times X_{it} + \mu_i + \psi_t] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
(1)

- Identification of benefit coefficients:
 - monthly changes in prices and payback period
 - Net metering possibly endogenous due to network tariff adjustments (component of electricity prices)

- Regress PV adoption (PV count or average capacity size) on discounted benefits of different incentive schemes, control variables, municipality and time fixed effects → around 80,000 observations at the municipality-month-level (2009-2018). variables
- Poisson Pseudo Maximum Likelihood Estimator (PPMLE):

$$\mathsf{PV}_{it} = \exp[\sum_{j \in J} \beta^j \times b_{rt}^j + \gamma \times \mathbf{X}_{it} + \mu_i + \psi_t] \cdot u_{it} \qquad j \in \{yel, nm, cap, capcost\}$$
(1)

- **Identification** of benefit coefficients:
 - monthly changes in prices and payback period
 - ► Net metering possibly endogenous due to network tariff adjustments (component of electricity prices) → for robustness, we use a control function instrumental variable approach (Gillingham and Tsvetanov, 2019). Instrument: network tariff-free electricity prices.

Results Number of Installations

Results Number of Installations

Grey dots/lines show results for PPMLE, CF estimates in black. Dots display point estimates, whiskers 95% confidence interval. SEs clustered at the municipality-level for baseline, for CF bootstrapped. CF estimates contains sub-regional variation in capacity-based incentive/cost. Observations at the municipality-month-level. Sample size 78,084.

• Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering. regression table

- Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering. regression table
- Different effectiveness could be due to **differences in the benefit designs**, i.e. more **uncertain**, less **direct** and less **salient** incentive schemes are less effective.

- Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering. regression table
- Different effectiveness could be due to **differences in the benefit designs**, i.e. more **uncertain**, less **direct** and less **salient** incentive schemes are less effective.
- \rightarrow The **benefit design** is an **important determinant** concerning the overall uptake of energy-related technology adoption.

- Output- and capacity-based incentive schemes are at least 60% more effective compared to cost saving-based (indirect) net-metering. regression table
- Different effectiveness could be due to **differences in the benefit designs**, i.e. more **uncertain**, less **direct** and less **salient** incentive schemes are less effective.
- \rightarrow The **benefit design** is an **important determinant** concerning the overall uptake of energy-related technology adoption.
- → Possible room for **improvement for policy makers**: more certain, more direct and salient incentive schemes increase energy-related technology uptake.

Conclusion

Thank you for listening!

KU Leuven - Energy Systems Integration & Modelling (ESIM) Research Group justus.boening@kuleuven.be

References

Burr, C. (2016). Subsidies and investmentsin the solar power market. Working Paper.

- De Groote, O. and Verboven, F. (2019). Subsidies and time discounting in new technology adoption: Evidence from solar photovoltaic systems. *American Economic Review*, 109(6):2137–2172.
- Feger, F., Pavanini, N., and Radulescu, D. (2022). Welfare and redistribution in residential electricity markets with solar power. *The Review of Economic Studies*, 89(6):3267–3302.
- Gautier, A. and Jacqmin, J. (2019). PV adoption: the role of distribution tariffs under net metering. *Journal of Regulatory Economics*, 57(1):53–73.
- Germeshausen, R. (2018). Effects of attribute-based regulation on technology adoption â the case of feed-in tariffs for solar photovoltaic. SSRN Electronic Journal.
- Gillingham, K. and Tsvetanov, T. (2019). Hurdles and steps: Estimating demand for solar photovoltaics. *Quantitative Economics*, 10(1):275–310.
- Hughes, J. E. and Podolefsky, M. (2015). Getting green with solar subsidies: Evidence from the california solar initiative. Journal of the Association of Environmental and Resource Economists, 2(2):235–275.
- Langer, A. and Lemoine, D. (2022). Designing dynamic subsidies to spur adoption of new technologies. Journal of the Association of Environmental and Resource Economists, 9(6):1197–1234.

• Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~80,000 observations.

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~80,000 observations.
- **Dependent Variable** variation by month and zip : number and average capacity size of new PV installations in the residential sector (≤10kWp) (source: VEKA, SPW)

dep vars summary

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~80,000 observations.
- **Dependent Variable** variation by month and zip : number and average capacity size of new PV installations in the residential sector (≤10kWp) (source: VEKA, SPW)

dep vars summary

• Main explanatory variables variation by month and region: discounted benefits per kW (source: market reports VREG & CWaPE). equations

- Monthly data, aggregated at the municipality (zip) level (262 Wallonia, 300 Flanders), 2008-2019: ~580,000 installations and ~80,000 observations.
- **Dependent Variable** variation by month and zip : number and average capacity size of new PV installations in the residential sector (≤10kWp) (source: VEKA, SPW)

dep vars summary

- Main explanatory variables variation by month and region: discounted benefits per kW (source: market reports VREG & CWaPE). equations
- **Control variables** *variation by year and zip*: median income deflated (source: statbel), sociodemographics and building characteristics (source: Walstat/provincies.incijfers)

Results Number of Installations

	Aggregate benefits		Sep. benefits	Sep. ben. (IV)
Model:	(1)	(2)	(3)	(4)
Net benefits (log)	6.83*** <i>(0.085)</i>			
Net benefits (thous)		1.05*** <i>(0.019)</i>		
Output-based incentive			1.34*** <i>(0.025)</i>	1.18 ^{***} (0.023)
Net metering			0.84*** <i>(0.035)</i>	0.68*** (0.041)
Capacity-based cost			-1.94*** <i>(0.092)</i>	-1.20*** (0.094)
Capacity-based incentive			1.45*** (0.042)	1.25*** (0.045)
Zip-, Month-, Year-fixed eff.:	Yes	Yes	Yes	Yes
Additional Control Variables:	Yes	Yes	Yes	Yes
Observations	78,048	78,048	78,048	78,048

Standard-errors in parentheses, Signif. Codes: ***: 0.01, **: 0.05, *: 0.1, obs. at monthly municipality level. Time span 2008-2019. Standard-errors for PPMLE (1)-(3) clustered at the municipality-level, for IV estimates (4) bootstrapped. IV estimates contains sub-regional variation in capacity-based incentive/cost. (back)

Results on Average Capacity Size Installations

	Aggregat	e benefits	Separate benefits	Separate benefits (IV)
Model:	(2) (3)		(4)	(5)
Net benefits (log)	1.40*** (0.048)			
Net benefits		0.344 ^{***} <i>(0.010)</i>		
Output-based incentive			0.390*** (0.012)	0.365*** <i>(0.012)</i>
Net metering			-0.113*** (0.022)	-0.112*** (0.030)
Capacity-based cost			-0.310*** (0.044)	-0.253*** (0.047)
Capacity-based incentive			-0.144*** (0.027)	-0.201*** (0.036)
Zip-, Month-, Year-fixed effects:	Yes	Yes	Yes	Yes
Additional Control Variables:		Yes	Yes	Yes
Observations	78,048	78,048	78,048	78,048

Standard-errors in parentheses, Signif. Codes: ***: 0.01, **: 0.05, *: 0.1, obs. at monthly municipality level. Time span 2008-2019. Standard-errors for PPMLE (1)-(3) clustered at the municipality-level, for IV estimates (4) bootstrapped. IV estimates contains sub-regional variation in capacity-based incentive/cost. Values in thous, EUR unless specified.

Böning et al

Present Value Equations

$$b_{i,s,r,t}^{tc}(cap) = \sum_{t=1}^{4} \beta^{12t} taxcut_t(cap)$$

$$b_{i,r,t}^{gc}(cap) = \beta \cdot (1 - (\beta^{gc})^{T_{r,t}^{gc}}) (1 - \beta^{gc})^{-1} \cdot n_{r,t}^{gc} \cdot p_{r,t}^{gc} \cdot \bar{y}(cap) / 12$$

$$b_{i,r,t}^{nm}(cap) = \beta \cdot (1 - (\beta^{nm})^{T^{tt}}) (1 - \beta^{nm})^{-1} \cdot p_{s,r,m}^{gl} \cdot \bar{y}(cap) / 12$$

$$b_{i,r,t}^{qw}(cap) = \beta \cdot (1 - (\beta^{qw})^{T^{qw}}) (1 - \beta^{qw})^{-1} \cdot p_{r,m}^{qw} \cdot \min(cap, 3kW)$$

$$b_{i,r,t}^{pr}(cap) = \beta \cdot (1 - (\beta^{pr})^{T^{tt}}) (1 - \beta^{pr})^{-1} \cdot p_{s,r,m}^{qw} \cdot AC^{sh} \cdot cap^{p}$$

$$(6)$$

back

Explanatory Variables - Summary Statistics 2

Variable	Mean	SD	Min	Median	Max	Observations
Benefit Variables						
net benefits (log)	8.48	0.42	7.72	8.32	9.12	70,308
net benefits (thousand)	5.25	2.23	2.25	4.09	9.15	70,308
GC (thousand)	1.95	2.37	0.00	0.00	5.89	70,308
net metering (thousand)	3.38	0.48	2.55	3.31	4.60	70,308
prosumer tariff (thousand)	0.18	0.33	-0.00	0.00	0.86	70,308
Qualiwatt (thousand)	0.11	0.28	0.00	0.00	1.11	70,308
Sociodemographics						
households (log)	8.49	0.86	3.50	8.50	12.37	6,696
net med income per decl. defl. (log)	10.09	0.11	9.72	10.11	10.44	6,516
population density (log)	5.63	1.00	3.18	5.69	8.17	6,696
age:below 18 (sh.)	0.21	0.02	0.10	0.20	0.29	6,696
age:18-49 (sh.)	0.41	0.02	0.24	0.41	0.51	6,694
age:above 64 (sh.)	0.18	0.03	0.10	0.18	0.40	6,694
age:50-64 (sh.)	0.20	0.02	0.13	0.20	0.32	6,696
non-nationals (sh.)	0.06	0.06	0.00	0.04	0.52	6,696
nationals (sh.)	0.94	0.06	0.48	0.96	1.00	6,696
female (sh.)	0.51	0.01	0.40	0.51	0.54	6,696
male (sh.)	0.49	0.01	0.46	0.49	0.60	6,696

Explanatory Variables - Summary Statistics 2

Variable	Mean	SD	Min	Median	Max	Observations
Household Characteristics						
hh single (sh.)	0.24	0.08	0.10	0.22	0.55	6,684
hh single parent (sh.)	0.08	0.03	0.03	0.06	0.18	6,684
hh couple /w children (sh.)	0.36	0.06	0.16	0.37	0.52	6,684
hh couple w/o children (sh.)	0.32	0.08	0.16	0.34	0.51	6,684
Building Characteristics						
house age:until 1981 (sh.)	0.73	0.08	0.46	0.72	0.95	6,696
house age:after 1981 (sh.)	0.27	0.08	0.05	0.28	0.54	6,696
house type:apartments (sh.)	0.12	0.11	0.00	0.09	0.79	6,696
house type:single fam closed (sh.)	0.19	0.13	0.01	0.15	0.71	6,696
house type:single fam semi-detached (sh.)	0.25	0.07	0.03	0.25	0.42	6,696
house type:single fam open (sh.)	0.45	0.19	0.01	0.47	0.85	6,696

back

Dependent Variable: PV installations

Region	zip	Total	Obs.	zerosh.	PV installations/obs.				mean cap. (KWp)/obs.			
		PV	(thous.)	/obs.	mean mea	l- sd	min	max	mean	sd	min	max
		(thous.)			ian							
Flanders	300	428,175	43,200	0.13	9.91 5.00) 16	0	336	4.49	1.25	0.54	10.00
Wallonia	258	152,078	37,152	0.30	4.09 2.00	8 (0	278	4.96	1.36	0.75	10.00
Total	558	580,253	80,352	0.21	7.22 3.00) 13	0	336	4.68	1.32	0.54	10.00

back

Robustness: Accounting for short-term dynamics

	Number of PV installations			Average	new installed	capacity
	Agg. ben.	Sep. ben.	Sep. ben. (IV)	Agg. ben.	Sep. ben.	Sep. ben. (IV)
Model:	(1)	(2)	(3)	(4)	(5)	(6)
Net benefits	1.30*** (0.018)			0.368*** (0.012)		
Capacity-based cost		-0.407*** (0.089)	-0.665*** (0.077)		-0.312*** (0.049)	-0.251*** (0.052)
Output-based incentive		1.30*** (0.027)	1.26*** (0.024)		0.429*** (0.015)	0.406*** (0.015)
Net metering		0.066 (0.044)	0.796*** (0.056)		-0.164*** (0.027)	-0.157*** (0.042)
Capacity-based incentive		0.724*** (0.047)	0.910*** (0.046)		-0.151*** (0.030)	-0.186*** (0.042)
<i>Controls, time-&zip-fixed effects:</i> Observations	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775	Yes 67,775

Robustness: Different discount rates

		Standard	PPMLE		IV Controlfunction					
	0% DR	3% DR	7% DR	15%	0% DR	3% DR	7% DR	15%		
		(base-		DR		(base-		DR		
		line)				line)				
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Capacity-based cost	-0.943***	-1.64***	-2.85***	-5.93***	-0.551***	-1.01***	-1.77***	-3.58***		
	(0.056)	(0.077)	(0.114)	(0.211)	(0.055)	(0.079)	(0.119)	(0.218)		
Output-based incentive	1.04** [*]	1.34***	1.78** [*]	2.73** [*]	0.935* ^{**} *	1.18^{***}	1.52** [*]	2.23** [*]		
	(0.020)	(0.025)	(0.032)	(0.051)	(0.018)	(0.023)	(0.029)	(0.044)		
Net metering	0.583* [*] *	0.836* ^{***}	1.26** [*]	2.37** [*]	0.441* ^{**} *	0.679* [*] **	1.07** [*]	2.01***		
	(0.027)	(0.035)	(0.049)	(0.082)	(0.030)	(0.041)	(0.059)	(0.103)		
Capacity-based incentive	1.17** [*]	1.45** [*]	Ì.81** [*]	2.47** [*]	0.961* ^{**} *	1.25** [*]	Ì.59** [*]	2.15** [*]		
	(0.038)	(0.042)	(0.048)	(0.060)	(0.040)	(0.045)	(0.052)	(0.066)		
Controls, time-&zip-fixed effects:	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Observations:	78,048	78,048	78,048	78,048	78,048	78,048	78,048	78,048		

back