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Abstract

Belgium is part of the top countries with the most Watt PV installed
per capita. The mismatch between the renewable electricity generation
and the consumption of this electricity poses a challenge for the system
and the distribution grid. Overproduction requires curtailment and under-
production requires installed capacity in other forms of electricity gener-
ation. Low voltage �exibility, e.g. a shift in time of use of charging an
electric vehicle (EV), can reduce the mismatch between production and
consumption. There is a certain technical potential but the real poten-
tial depends on the willingness of consumers to participate in demand
response programs. The willingness to participate depends on their pref-
erences, which are obtained through discrete choice experiments (DCEs).
The goal of our work is to study the inclusion of consumer preferences for
the adoption and use of �exible EV chargers in energy system planning
models. While we recognise the potential of agent based modelling, we
keep the focus on existing energy system planning models and modi�ca-
tions to these type of models. Existing energy system planning models
can consider consumer preferences in a post analysis. In a post analysis
of TIMES-BE, a tool to study di�erent pathways for the energy system in
Belgium, we calculate the available budget to compensate for the inconve-
nience of using �exible EV chargers as the di�erence between the cost of
the energy system with and without �exible chargers. The available bud-
get is then compared to the consumer preference for compensation for the
adoption of �exible EV chargers derived from the implicit discount rate
obtained from the DCE. Generally, there is su�cient budget, especially
from 2035 and onwards when the need for �exibility measures increase.
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The existing model provides insights in the budgets for �exible EV charg-
ers but the direct competition between compensation for the adoption of
�exible EV chargers and other �exibility measures, e.g. investments in
stationary batteries, is not possible. To that end, the consumer prefer-
ence needs to become part of the energy system planning model. Here, we
present a formulation that makes this competition possible in a stylised
model. To derive that formulation, we transform the utility functions
from the DCE to probabilities for adopting and using �exible chargers
and linearise these probabilities. As opposed to the existing model, for
the stylised model we focus on the methodology instead of the analysis
and as such only consider a limited setup. For such a limited setup, the
results show that remuneration of �exible chargers is still preferred over
investments in batteries. Despite functional and useful, the equations
tend to become non linear, impacting the computational performance of
this approach. Therefore, for future research we suggest to study how our
approach holds up against an agent based model.

Nomenclature

DCE Discrete choice experiment; survey where participants need to choose be-
tween distinct options.

EV Electric vehicle.

HP Household heat pump.

LV Low voltage

MV Medium voltage

PV Photovoltaic or solar panel for generation of electricity.

V2G Bidirectional charging of an EV.

V2H Bidirectional charging of an EV, limited to the use of the appliances at
home.

1 Consumer preference for low voltage �exibility

in the context of Belgium

With a production of 761 kWh per capita in 2024, Belgium is among the top
countries with the most Watt PV installed per capita [12]. These PV systems
pose a challenge for the distribution grid; especially when there is a signi�cant
mismatch between the PV production and the demand in the grid. The voltages
in the grid can reach prohibitive levels at times of overproduction, possibly
resulting in curtailment of the PV systems. Underproduction on the other hand
requires other forms of electricity production to pick up the slack; which implies
a su�cient installed capacity of these generation units. Low voltage �exibility, or
more commonly called demand response at residential level, is the shift in time
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of use of an asset such as, e.g. charging of an EV and use of a HP. Low voltage
�exibility can reduce the mismatch between production and consumption and
as such lower the capacity requirements of other generation units.

Technically, there are little barriers for the use of low voltage �exibility. The
willingness to adopt these measures is a di�erent issue [13]. Low voltage �exibil-
ity has an impact on the daily life of a consumer. Consumers have certain habits
and preferences for the use of their assets and need su�cient compensation or
bene�ts to adjust their behaviour.

At the planning stage of investments in additional capacity, it is hard to take
the consumer preference into account. Often, scenarios are considered for the
extreme cases where no one participates in �exibility measures or where the
full potential can be used [4, 3]. The real potential is somewhere in between.
To obtain a scenario in between, a common approach is to make a distinction
between comfort, cost and environment and design di�erent consumer pro�les
with di�erent emphasis on these categories [15]. Although these scenarios pro-
vide insights in the �exibility potential, the actual �exibility potential remains
unclear.

It is more rare for energy system planning models to directly integrate consumer
preference in the modelling. Zhang, Caramanis and Baillieul include consumer
preference for the control of idle (cooling) appliances in a stochastic dynamic
programming problem for regulation service reserves [21]. Sachdev and Singh
consider the demand response as a trade-o� between di�erent goods when de-
ciding to participate in demand response or not in a cost optimisation problem
for the grid [16]. However, both works use theoretical utility functions that are
based on certain common principles but are not derived directly from a survey.

The goal of our study is to embed the consumer preference from the DCEs in
an energy system planning process to obtain a more realistic potential of low
voltage �exibility in the energy system. To that end we need to obtain consumer
preferences and form a modelling strategy.

Discrete choice experiments, a form of surveys, are a common tool to obtain
consumer preferences. Table 1 provides a non exhaustive overview of consumer
preferences for low voltage �exibility in literature.
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Table 1: Consumer preferences for low voltage �exibility in literature.
Technology Location Time preference reference

EV highway,
shop-
ping
centre

2024 Sensitive to the charging price;
trade o� between waiting and

price.

[5]

EV home,
work

2024 Willingness to wait is higher. [5]

EV, smart
home

home 2024 Interest to participate is more
important than �nances and

environment.

[19]

appliances Colombia 2020,
18-24h

Higher interest to participate
in (manual demand response

in) the evening.

[11]

demand
response

Poland 2023 Stay in control of their own
assets, clear communication,

user-friendly interface,
predictable changes in short

frequent intervals

[17]

all all all Participation in demand
response programs require

�nancial bene�ts.

[11, 5,
17]

all all all Young, educated people tend to
be more open for participation.

[5, 19]

It is clear that consumer preference is context speci�c. As such, for the context
of Belgium, we collaborate with related work on a discrete choice experiment
for the consumer preference on the adoption and use of �exible EV chargers [6].
Accordingly, the focus of our study will also be on �exible EV chargers.

The scope of two separate DCEs are described in Tables 2 and 3. The �rst
DCE is concerned with the adoption of a �exible charger with certain attributes
whereas the second DCE focuses on ceding control to a third party. More
speci�cally, the baseline for the �rst DCE is a simple charger with the electricity
contract that they currently have (typically a volumetric contract or in some
cases a day/night contract). In that DCE, the individual has the choice between
keeping the simple charger or changing to a charger with certain attributes, e.g.
a charger that is controlled by an energy retailer and is able to charge as well as
discharge to the grid. The baseline of the second DCE is that they already have
a bidirectional charger but they did not cede control to a third party (and as
such chances are that they are not fully used) because of �nancial and privacy
concerns or driving range anxiety. The second DCE inquires how the presence
of certain attributes, e.g. a portable battery bank, alleviates these concerns and
allow for the control of the bidirectional charger to be ceded to a third party
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(and as such be fully used).

In our study, we are rather concerned with the availability of �exibility from
�exible EV chargers to the energy system. In principle, to obtain a clear picture
on the adoption and control of �exible EV chargers and as such the full avail-
ability of �exibility in the energy system, we have to combine the two DCEs.
However, combining the results of two DCEs is not trivial and not within the
scope of our work. Therefore, for all intents and purposes, the two DCEs are to
be treated completely separately. This separation implies that the availability
of �exibility is lower than it could have been, which can be considered as a lower
bound of the available �exibility.

Table 2: Attributes considered in the �rst DCE on the adoption of �exible
chargers with certain features.
Attribute type Attribute Description

Control solar charging Charging your EV mostly with
your PV.

dynamic load
management

Reduce the peak consumption of
the home.

smart
controller at

home

A local solution for controlling
your EV.

energy retailer The retailer directly controls the
charging of your EV.

smartphone You control the charging of the EV
yourself through your smartphone.

Bidirectional
charging

home Allow discharging of your EV, but
only for your own appliances.

home and grid Allow discharging of your EV to
your own appliances and/or the

local grid.
Financial reward An annualised �nancial bene�t.

The �nancial bene�t can come
from the optimal use of the battery
or as a subsidy on the investment.

price Investment cost of the charger

5



Table 3: Attributes considered in the second DCE on ceeding control of �exible
chargers to a third party.
Attribute type Attribute Description

Battery minimum
battery level

A minimum state of charge is
guaranteed before the charger is

used �exibly.
portable

battery bank
You have access to a portable

battery bank, as if you would carry
a jerrycan in your gasoline car.

road side
charging
insurance

When you run out of battery
charge during your trip, a service
vehicle shows up to charge your
battery enough to get to the next

charging station.
Privacy data encryption Data exchange between you and

the energy retailer is encrypted.
Financial fee A reduction on your energy bill

savings that are used by your
retailer to provide the features

above.

There are di�erent possible modelling strategies to embed the consumer pref-
erence into energy system planning models. Here, we consider a post analysis
of an existing energy system planning model and a new formulation for energy
system planning models that embed the consumer preference directly.

We also recognise the potential for agent based models in this context. However,
there are few rigorously validated models and the correct interpretation can be
problematic [8]. For that reason, transmission grid operators may be reluctant
to adopt these kind of approaches. And for the same reason, we focus here on
strategies that are closer to current common modelling practices. Though, we
do suggest to compare an agent based model to our own approach in future
work.

For the post analysis, TIMES-BE is an appropriate tool to determine pathways
for the energy system in Belgium, including investments in electricity generation
for a given maximum share of �exible EV chargers. By comparing di�erent
scenarios with and without �exible chargers TIMES provides insights in the
available budget for compensating the adoption and use of �exible chargers. The
post analysis studies whether that budget is in line with the stated preference
of consumers for compensation (from the �rst DCE).

The post analysis only provides insights in the budgets and does not allow
for, e.g., stationary batteries to compete directly with remuneration strategies
for the adoption of �exible EV chargers. To make direct use of the consumer
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preference in energy system planning models, we create a new formulation in
a stylised model for energy system planning model. With this stylised model
the focus shifts from the analysis to the methodology; the setup for the stylised
model has a smaller scope. Due to the smaller scope, the results of the stylised
model are not usable in absolute terms but due to the use of the TIMES model
in the �rst approach, the results of the stylised model can be used in relative
terms to the results from the TIMES model.

The interactions of the two energy system planning models with the DCEs are
shown in Figure 1. That �gure also serves as the overview of our study. We have
already discussed the consumer preference for low voltage �exibility in Belgium.
The next section deals with the scenario analysis and the the post analysis of
the TIMES-BE model where the results are compared to the results of the DCE.
Thereafter follows the stylised model with its formulation aligned to the DCEs
and with its data aligned to the TIMES-BE scenarios. Afterwards, the overall
results are further discussed.

Figure 1: Modelling overview: TIMES-BE considers the DCE in a post analysis
whereas the stylised model uses the DCE internally and uses similar input as
the TIMES-BE model.

2 Scenario analysis with TIMES-BE on the po-

tential of �exible EV chargers

TIMES-BE is used for many di�erent studies. A general description of the model
is provided in Appendix B. Here, we focus on the �exibility that �exible EV
chargers can provide to the energy system in Belgium. With a scenario analysis
we can explore di�erent energy systems with di�erent availability of �exible EV
chargers (Subsections 2.3 and 2.4). Whether these scenarios are realistic can be
determined from a comparison to the stated preferences for �nancial bene�ts
from the DCE (Subsection 2.5). But, before heading to these results, we will
brie�y explain the setup for Belgium (Subsection 2.1) with a particular focus
on the modelling of EV chargers (Subsection 2.2).
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2.1 TIMES-BE setup for Belgium

The TIMES-BE model is a single-region model, representing Belgium as one
aggregated energy system without regional disaggregation [9]. In terms of scope,
the model explicitly covers the full chain of the energy system, including:

� Supply sector � including domestic resource extraction, imports, and pro-
duction of energy carriers (excluding electricity)

� Power sector � detailed representation of all electricity generation tech-
nologies, storage, and grid-related infrastructure.

� End-use demand sectors, which are broken down into:

� Buildings (Residential and Commercial)

� Transport (including passenger and freight, both national and inter-
national)

� Industry � detailed by subsectors and energy/material �ows (e.g.
steel, chemicals),

� Agriculture

Due to the complexity of modelling all sectors, fuels, and transformation pro-
cesses over long horizons, TIMES-BE does not operate on an hourly resolution
for each year [9]. Instead, it employs a time-slicing approach using 10 represen-
tative days, selected through clustering algorithms to capture annual variability
in demand, prices, and renewable generation patterns [14]. These days are re-
solved on a 2-hourly basis, a granularity shown in literature to o�er comparable
accuracy to hourly models, while signi�cantly reducing computational burden
[7].

2.2 Modelling EV charging

In TIMES-BE, the road transport sector is subdivided into four main cate-
gories: passenger cars, buses, freight, and motorcycles. Passenger cars are fur-
ther disaggregated into four behavioural categories (Figure 2): Commuting /
Non-Commuting, Long / Short Distance. Only the passenger car categories are
associated with hourly (time-slice level) energy service demands; other vehicle
types are characterized only at annual level [9]. The demand projections are
sourced from the TREMOVE model, which foresees a 11�14% demand growth
for passenger vehicles, buses, and motorcycles, and nearly 29% for trucks by
2050 [18].
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Figure 2: Road transport sector structure in TIMES-BE

Passenger electric vehicles (EVs) are linked to charging infrastructure through
two sectors: residential (home charging) and commercial (workplace charging).
The model represents charging infrastructure with availability factors dependent
on the vehicle's physical presence at home or work, enabling a time-resolved
optimisation of charging pro�les. Charging technologies are grouped as follows
(Figure 3):

� Standard Unidirectional Chargers (User-driven): Availability is capped by
time-slice presence at home/work. Use is �xed during typical peak user-
preferred periods, while optimized for system cost in all other periods.

� Flexible Unidirectional Chargers: Subject to the same availability caps,
but charging time is only determined by (total) system cost optimisation.

� Bidirectional Chargers (V2H/V2B/V2G): Allow electricity to �ow both
into and out of the vehicle. The bidirectional �ow can:

� Support residential/commercial electricity demand (Vehicle-to-Home/Building),

� Inject power into the local LV grid (Vehicle-to-Grid), where it can be
stored in grid-scale batteries or sent to MV grid

Only commuting vehicle categories have access to both residential and commer-
cial chargers, whereas non-commuting vehicles are limited to residential charg-
ing. Bidirectional chargers are pivotal for enabling EVs to act as distributed
energy storage assets, supporting both user-level �exibility and wider grid inte-
gration.

A �nancial characterisation of each charger type is provided in the appendix, i.e.
Table 2.3, while their availability factor (re�ecting the times in which charging
is possible for the user) is reported in Figure 4.
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Figure 3: EV Passenger Cars Charging Infrastructure Modelling in TIMES-BE

Figure 4: Availability of Home EV Chargers (left) and Work EV Chargers
(right): for Flex chargers it is shown as an area, being it only an UPPER
bound, while for Un�ex chargers it is shown as a line, being a FIXED bound.
Representative Days (RD): RD01, RD04, RD06 are weekend days.

2.3 Scenario setup

In this analysis, we choose to base our sensitivity exploration on the PATHS2050
scenarios, as they provide a well-established and extensively modelled set of
storylines that serve as a robust reference for assessing future energy system
transformations in Belgium [1]. The PATHS2050 study explores three distinct
plausible transition pathways toward a climate-neutral Belgium by 2050. Each
storyline re�ects a di�erent strategic emphasis:

� ROTORS prioritizes the maximal deployment of renewable electricity, par-
ticularly wind power onshore and o�shore, while keeping nuclear energy
to the current levels, and bound carbon capture deployment.

� IMPORTS emphasizes large-scale imports of clean hydrogen and derived
synthetic fuels, reducing the domestic build-up of both renewables and
nuclear

� REACTORS explores a future where nuclear energy is a key pillar, with
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extended or new reactor capacity, reducing pressure on renewables and
imports.

Across all three storylines, we impose a common boundary condition on the
uptake of �exible EV charging and V2H/B/G (vehicle-to-home/building/grid)
to re�ect real-world behavioural and infrastructural constraints. This upper-
bound constraint evolves over time: �exible charging adoption may rises from
7% in 2025 to 48% in 2050, while V2H/B/G may grows from 0% to 38%. These
limits are grounded in the 2023 ELIA Adequacy and Flexibility Study [4] and
TML's 2023 EPOC survey on public acceptance and readiness for �exibility in
mobility [20].

To better explore the solution space and enable a more robust assessment of the
remuneration budget (i.e. the cost savings compared to an energy system with-
out �exible EV chargers, see Subsection 2.5) across di�erent �exibility levels,
the initial set of scenarios�based on the three core PATHS2050 storylines (RO-
TORS, REACTORS, IMPORTS)�was extended through a series of targeted
sensitivities.

For each storyline, four �exibility con�gurations were constructed to capture
varying degrees of societal and infrastructural acceptance of �exibility technolo-
gies:

� Full �exibility (100_100_100): Flex charging, V2H (Vehicle-to-Home),
and V2G (Vehicle-to-Grid) are all allowed.

� No V2G (100_100_0): Only �ex charging and V2H are accepted, V2G is
restricted.

� Flex charging only (100_0_0): V2H and V2G are excluded.

� No �exibility (0_0_0): EVs are charged without any smart or bi-directional
capability.

This extension allows the model to more accurately re�ect real-world behavioural
limits and infrastructure constraints while enhancing comparability between sce-
narios. To further enable comparability, a constraint on the global minimum
charging capacity has been set in in all scenarios, to the minimum level in the
original story lines, i.e. 1.5 million chargers (~11.3 GW). The detailed impacts
of these sensitivities on system cost, grid utilisation, and required remuneration
budgets are presented in Section 2.4. The full scenario matrix is summarised in
Table 2.3.

11



Table 4: Set of scenarios, starting from the main story lines. Each scenario is
de�ned by the maximum percentage of chargers can be of a particular type. For
example, 48% Max Flex Chargers means that maximum 48% of the chargers
can be unidirectional chargers that can be used �exibly. The other chargers
need to be of another type. A charger can always be a unidirectional charger
that is operated in�exibly.
Scenario Base

Storyline
Max Flex

Chargers [%]
Max V2H/B

[%]
Max V2G

[%]
ROTORS ROTORS 48% 38% 38%
RO100_100_100ROTORS 100% 100% 100%
RO100_100_0 ROTORS 100% 100% 0%
RO100_0_0 ROTORS 100% 0% 0%
RO0_0_0 ROTORS 0% 0% 0%

IMPORTS IMPORTS 48% 38% 38%
IM100_100_100IMPORTS 100% 100% 100%
IM100_100_0 IMPORTS 100% 100% 0%
IM100_0_0 IMPORTS 100% 0% 0%
IM0_0_0 IMPORTS 0% 0% 0%

REACTORS REACTORS 48% 38% 38%
RE100_100_100REACTORS 100% 100% 100%
RE100_100_0 REACTORS 100% 100% 0%
RE100_0_0 REACTORS 100% 0% 0%
RE0_0_0 REACTORS 0% 0% 0%

2.4 Scenario results

The modelling results in Table 2.4 clearly show that the higher the level of
�exibility and bidirectionality allowed in EV charging infrastructure, the greater
the optimal installed capacity of such technologies in the system. This outcome
re�ects the system's preference for accessing distributed �exibility to support
grid stability and reduce system costs.

In all scenarios where �exible chargers are allowed, they are consistently favoured
over standard (non-�ex) chargers, even if ~15% more expensive (Table B.1).
Their ability to shift load and reduce peak demand makes them a valuable asset
in the cost-optimal mix.

As for Flex chargers with V2H (Vehicle-to-Home), it is adopted in moderate
quantities�up to around 25% of the installed capacity�and is always preferred
over V2B (Vehicle-to-Building), primarily due to greater evening availability, a
critical period when solar PV output drops and system stress increases.

V2G, however, is not adopted in any scenario. This is not due to lack of value
per se, but rather due to a limitation of the model. TIMES takes a copper plate
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approach, i.e. aggregating all homes/buildings of the same type in a single node.
As a result, excess electricity from one V2H-equipped home will not �ow to the
low-voltage grid, but would be consumed in other homes, avoiding associated
distribution costs. Hence, the results of the scenarios with and without V2G
enabled (100_100_100 and 100_100_0 respectively) are the same: for this rea-
son, from now on, we will combine the scenario with and without V2G enabled
into one (i.e. 100_100_100/0).

A general observation concerning the deployment of EV charging infrastructure
is that the installed capacity of EV chargers ranges between 11.3 GW (approx-
imately 1.5 million chargers) and 17.9 GW (around 2.5 million chargers) across
the modeled scenarios. Given an estimated EV stock of 6 million vehicles by
2050, this corresponds to a charger-to-vehicle ratio between 1:4 and 1:2.5. This
relationship is particularly relevant for the remuneration analysis, where two dis-
tinct approaches are considered: one that computes remuneration on a per-EV
driver basis, and another that does so per charging device.

Table 5: Results � EV Chargers optimal capacity installed in 2050
Chargers [GW] Chargers [%]

Un�ex Flex Flex
+
V2H/B

V2G Total Flex Flex
+
V2H/B

V2G

ROTORS* 5.8 2.9 2.6 0.0 11.3 48% 23% 0%
RO100_100_100 0.1 13.8 3.3 0.0 17.2 100% 19% 0%
RO100_100_0 0.1 13.8 3.3 0.0 17.2 100% 19% 0%
RO100_0_0 0.2 11.0 0.0 0.0 11.3 98% 0% 0%
RO0_0_0 11.3 0.0 0.0 0.0 11.3 0% 0% 0%

IMPORTS* 5.8 3.0 2.5 0.0 11.3 48% 22% 0%
IM100_100_100 0.4 14.0 3.4 0.0 17.8 98% 19% 0%
IM100_100_0 0.4 14.0 3.4 0.0 17.8 98% 19% 0%
IM100_0_0 0.4 10.9 0.0 0.0 11.3 96% 0% 0%
IM0_0_0 11.3 0.0 0.0 0.0 11.3 0% 0% 0%

REACTORS* 6.1 2.7 2.9 0.0 11.8 48% 25% 0%
RE100_100_100 0.0 14.5 3.4 0.0 17.9 100% 19% 0%
RE100_100_0 0.0 14.5 3.4 0.0 17.9 100% 19% 0%
RE100_0_0 0.1 12.3 0.0 0.0 12.4 99% 0% 0%
RE0_0_0 11.3 0.0 0.0 0.0 11.3 0% 0% 0%

The integration of �exible EV charging infrastructure substantially shapes the
energy system in 2050 (Figure 5 and Table 2.4), reinforcing its role as a corner-
stone of system-wide �exibility. The main impacts include:

� Other �exibility technologies: Flexible EV charging notably reduces the
reliance on stationary batteries. In scenarios without �exible charging,
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battery storage capacity can increase up to 8 times, especially in the ab-
sence of large-scale nuclear capacity. This highlights a strong substitution
e�ect between mobile and stationary �exibility sources.

� Electri�cation e�ects: Allowing �exible charging raises total electricity
demand modestly�up to +3%�as the system can economically accom-
modate more electri�ed end-uses due to better peak management.

� Import dependency: Without �exible charging, net electricity imports can
rise by 2�5 TWh, as the domestic system struggles to meet peak demand
with variable renewables and limited �exibility.

� Renewable integration and power infrastructure: High �exibility facilitates
greater solar PV deployment, lowers the need for dispatchable generation
(by 1.5�3 GW), and reduces distribution grid reinforcement needs.

Figure 5: Dispatchabe Capacity by Source (2050)
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Table 6: Impacts at energy system level of the di�erent story lines.
Other Flex [GW] Total Flows [TWh] Power Supply [GW] Distr. Grid [GW]

Batteries Electrolyzers Demand Net Imp PV Wind Dispatchable Total
ROTORS 6.1 2.8 179.5 7.7 39.3 39.8 11.2 8.3
RO100_100_100/0 2.3 2.8 181.8 6.2 43.1 39.8 10.1 8.2
RO100_0_0 9.2 2.7 179.5 6.5 40.2 39.8 11.0 8.3
RO0_0_0 17.7 2.7 179.3 8.4 37.2 39.8 11.4 8.5

IMPORTS 6.9 0.0 159.4 32.4 46.5 23.2 14.5 8.2
IM100_100_100/0 3.7 0.0 160.2 30.2 50.3 23.2 11.6 7.8
IM100_0_0 8.2 0.0 158.8 31.7 46.2 23.2 14.0 8.1
IM0_0_0 23.8 0.0 159.0 31.7 47.1 23.2 14.5 8.1

REACTORS 6.7 1.9 163.2 8.2 44.1 23.1 17.5 9.6
RE100_100_100/0 3.3 2.1 163.3 4.4 50.1 23.1 14.0 9.1
RE100_0_0 9.5 2.1 162.2 8.6 43.4 23.1 16.6 9.5
RE0_0_0 10.8 2.1 161.9 9.5 41.8 23.2 17.1 9.7

In terms of system cost implications, the deployment of fully �exible EV charg-
ing yields signi�cant economic bene�ts over time, clearly visible in the di�erence
with in�exible scenarios (Figure 6).

By 2040, although higher upfront investments are required for EV charging
infrastructure and expanded solar PV capacity, these are more than o�set by
carbon o�setting (the higher emissions in non-�ex scenarios require costly o�sets
via instruments like the EU ETS, leading to potential savings of up to ¿1 billion
per year) and savings in stationary battery savings (250-500 M¿/year).

By 2050, the structure of savings evolves, with battery savings becoming dom-
inant, reaching ¿700�800 million annually, followed by energy trading savings
(power and commodity exchanges) with an additional ¿500�800 million/year.
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Figure 6: Cost savings expressed as a cost di�erence between Fully Flex
(100_100_0) and Non-�ex scenarios (0_0_0), per story line (imports, reac-
tors and rotors) for 2030, 2040 and 2050.

2.5 Remuneration budget

To compute the remuneration budget for �exible EV charging and bidirectional
applications (V2H/B/G), we apply several methodologies (all based on installed
�exible technology capacities and not dependent of actual usage) based on dif-
ferences in system costs and user counts derived from TIMES model outputs.
Two sensitivity dimensions are individuated, one based on how the remuneration
is split across �exibility technology adoption (Equal vs Technology dependent),
and one based on across whom the remuneration is split (per Driver vs per
Charger) :

� Technology independent, or Equal (in Figure 7): Total annualised system
cost savings (vs no-�exibility baseline, e.g. RO/IM/RE0_0_0) are equally
distributed across all chargers participating in �exibility schemes (equaling
the number of chargers installed, computed as the ratio between capacity
and typical size, Table B.1).

� Technology dependent, or Proportional (columns Flex and V2H in Figure
7): For each �exibility technology, the remuneration is computed by iso-
lating its marginal contribution to system cost savings. Speci�cally, the
system cost di�erence between a scenario without the �exibility technol-
ogy and a scenario with full availability of the technology is assigned to
its users. For example:
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� Flex charging: savings = RO/IM/RE0_0_0 � RO/IM/RE100_0_0

� V2H/B: savings = RO/IM/RE100_0_0 � RO/IM/RE100_100_0

� Each saving is then divided by the corresponding number of users
chargers (e.g. number of �ex chargers in `Flex charging' or V2H-
enabled devices in 'V2H/B').

� Per Charger (in Figure 7): Each saving is then divided by the corre-
sponding number of chargers (e.g. number of �exible chargers in 1. or
V2H-enabled devices in 2.).

� Per Driver (in Figure 7): The cost savings are now distributed over the
number of EVs (therefore, instead of dividing the savings by the number
of chargers, a number of EVs being associated with a �exibility strategy
is derived proportionally from the total number of EVs).

All approaches are rescaled to match the system cost savings, ensuring budget
consistency and avoiding overcompensation.

Results are synthesized in Figure 7, o�ering a visual summary of all methods
and their outputs.

It can be observed that under the �Equal� remuneration schemes, compensation
levels are uniform across all users participating in �exibility, including both �ex-
ible charging and V2H adopters. In contrast, the proportional schemes (columns
Flex and V2H) allocate higher remuneration to V2H adopters, who are fewer
in number yet contribute signi�cantly to system cost savings. This re�ects the
higher marginal value of V2H �exibility in the modelled energy system.

An important trend is that remuneration levels increase over time across nearly
all scenarios and schemes. This indicates the growing economic value of �exible
charging technologies as the energy transition progresses and system integration
challenges intensify.

Nevertheless, remuneration levels vary widely depending on the adopted scheme
and scenario. For instance, remuneration for �exible charging ranges from ap-
proximately ¿20/year (Flex, per Driver) to ¿200/year (Equal, per Charger)
in 2030, and from ¿80/year (Flex, per Driver) to around ¿550/year (Equal,
per Charger) by 2050. For V2H users, remuneration spans from the above men-
tioned ¿20/year, to ¿350/year (V2H, per Charger) in 2030, and from ¿80/year
to as much as ¿1,200/year (V2H, per Charger) in 2050.
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Figure 7: Remuneration budget in the di�erent scenarios, for the di�erent cal-
culation methodologies.

To relate these results to the consumer preference of the DCE, the remuneration
levels are compared with the minimum rewards expected by the users: they are
computed starting from the IDR obtained from the DCE (28.5% for the sample
average and 23% for the majority class) to annualise the di�erence in investment
between each �exibility technology with the non-�exible equivalent (a simple
one-directional charger). The time horizon taken into account is the lifetime
of the charging technologies (15 years). During the comparison, note that the
remuneration budgets are by milestone year, while the implicit discount rate
re�ect the savings over the lifetime of a charger.

The results in Figure 7 show that the remuneration budget exceeds the minimum
reward expected in all scenarios and considering any remuneration sharing setup,
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starting from 2035 onwards, even when looking at Flexible charging (in the
`Proportional' sharing setup), and computing the remuneration per Driver.

3 Modelling energy system planning with con-

sumer preference

In the scenario analysis with TIMES we saw the competition between, e.g., mo-
bile and stationary batteries where the consumer preference was considered as
an afterthought. In the next step we want to make the consumer preference an
integral part to such a competition. The integration of the consumer preference
in the energy system planning model requires modi�cations to the formulation
model. Although, in principle, it is possible to make those modi�cations in the
TIMES model, the model is quite large and cumbersome for such an experi-
mental exercise. Instead, we choose to work with a stylised model and a limited
scope. That approach o�ers more freedom in the design of the experiments.
That also means that we shift the focus from the analysis to the modelling
itself.

The stylised model is a relaxed clustered unit commitment model with consid-
erations for adequacy. The full model is available in appendix C. Here, we focus
on the part of the formulation that is relevant to the consumer preference for
low voltage �exibility. Note that for simplicity we only consider a single electric
vehicle and charger in these equations. The full formulation is di�erent as it
considers multiple electric vehicles and chargers.

The limited scope and the focus on the methodology make the results of the
stylised model not usable in absolute terms. However, to be able to use the
results in relative terms to the TIMES model, we repeat part of the analysis
from Section 2 with the stylised model and compare the results of both models
(Section 3.1).

Of course, in the comparison between the stylised model and the TIMES model,
the stylised model will seem inferior. However, the stylised model is not sup-
posed to outperform the TIMES model. The stylised model is meant to experi-
ment with the formulation and allow for the consumer preference to take a part
in the competition between, e.g., mobile and stationary batteries. To that end,
we �rst need to prepare the equations (i.e. utility functions) from the DCE to
�t a linear energy system planning model. That is covered in Section 3.2.

We will not cover every attribute of the DCE as, from the perspective of the
model, there is some overlap in some of the attributes and not every attribute
is directly within the scope of a linear model for the energy system.1 Here
we focus on �nancial concerns (Section 3.3) and driving range anxiety (Section
3.4). For the �nancial concerns we consider a compensation for the use of a

1By the design of the DCE, each of these features can chosen independently. As such we

can choose the combination of features that makes most sense within the context of the energy

system planning model.
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�exible charger and for the driving range anxiety we consider a minimum state
of charge. Note that these attributes originate from di�erent DCEs and as such
need to be treated separately. For both cases we use the same model but we
enable/disable the equations related to the DCEs whenever relevant.

3.1 Post analysis with a stylised energy system planning
model

The setup for the stylised model is aligned with that of the TIMES model when-
ever possible. However, some simpli�cations are in place to make the interpre-
tation of the impact of the new equations easier. Among the simpli�cations are
that the stylised model only considers the power sector and residential chargers.
Also, the electric vehicles follow the same pattern, causing very extreme condi-
tions of all vehicles and no vehicles to be (in)accessissible at the same time. The
stylised model covers the time horizon from 2025 to 2050 (with milestone years
every 5 years that are deemed representative for the years in between) whereas
the TIMES-BE model starts from 2014. Otherwise, the data is mostly aligned
with the TIMES-BE model.2

Another big di�erence is that the stylised model is meant to consider more
than one node/region. In a single node setup, there are no links and as such
no associated distribution costs.3 In a multi node setup, electric vehicles can
transfer electricity not only in time but also in space. V2G chargers may be
advantageous in such a setup up. For the comparison to TIMES, we will have
to consider a single node setup. However, to study the selection of the type of
�exible charger, we will also look at a multi node setup as shown in Figure 8.
In that setup we simplify the Belgian electricity system to �ve nodes. One node
represents the TSO and has all the electricity generation units. In this node,
the model can also choose to invest in additional units to increase capacity or
�exibility to obtain an adequate system. The other nodes represent di�erent
DSOs. Each DSO has its own demand, HP, PV and EV adoption. The expected
routes are also included in the model to track in what location the electricity
is actually demanded. Each node has two electric vehicles; one to drive one
node clockwise and back and one to drive one node counterclockwise and back.
At every moment in time there is a vehicle available in a node. These routes
are somewhat arbitrary. As the number of nodes and the number of (clustered)
vehicles are limited (due to the limited setup), so are the routes. A more realistic
approach is to monitor di�erent routes and cluster them in a certain number of
distinct vehicles and nodes. But that is beyond the scope of our study.

2Except for the demand, wind and solar pro�les as well as the existing capacities which

are taken directly from the transmission grid operator Elia. Though, those values should be

very similar if not the same.
3Distribution costs are only indirectly present in the stylised model in the form of invest-

ment and maintenance cost of overhead lines.
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Figure 8: A stylised setup for the electricity system in Belgium with one node
representing the TSO with all of the electricity generation units and several
nodes representing di�erent DSOs. Each DSO has its own demand, PV adoption
and EV adoption. The solid lines represent electricity �ows whereas the dashed
lines represent vehicle routes.

For the single node setup and the multi node setup, similar to TIMES-BE, we
simulate the energy system when there are no �exible EV chargers available and
when the �exible EV chargers are fully available.

Flexible EV chargers do not appear in the solution of the stylised model for the
values from TIMES. This is a consequence of the limited setup. For example,
the extreme conditions of the charging pattern of the vehicles limit the use
in time of the batteries of electric vehicles. While in theory, it is possible to
create a setup with a better mix of patterns of electric vehicles, that quickly
becomes too complex for the small setup we need to experiment with equations
for the consumer preference for the adoption and use of �exible EV chargers.
To obtain results that are more in line with the behaviour of TIMES, i.e. a
more fair competition between �exible EV chargers and stationary batteries, we
therefore opt instead to arti�cially increase the cost of stationary batteries by a
factor of 4 and reduce the cost of �exible chargers by a factor of 4.

For the multi node setup and the two scenarios on �exible chargers respectively,
Figures 9 and 10 show the charging pattern for 4 weekdays throughout the
year for an electric vehicle in node S that is only used for driving to work and
back. It is clear that in the scenario without �exible chargers the batteries of
the vehicles are largely unused, whereas the batteries are constantly used in the
scenario where all chargers can be converted to �exible chargers.
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Figure 9: Charging pattern for 4 week days throughout the year for an electric
vehicle associated to the S node in the case there is no access to �exible chargers.
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Figure 10: Charging pattern for 4 week days throughout the year for an electric
vehicle associated to the S node in the case there is full access to �exible chargers.

Table 3.1 compares the results for the selected charger type and the cost savings
(between the no �ex and full �ex scenarios) for the TIMES-BE model and the
stylised model. As mentioned before, there is a big di�erence in scope and
setup between the two models: TIMES-BE covers multiple sectors but only has
one node whereas the stylised model only covers the electricity sector but has
multiple nodes. In an attempt to make the models somewhat comparable, we
also provide the results for the electricity sector in a single node for both models
(for the time horizon of 2025-2050). Note that the calculation for the TIMES-
BE model is a simpli�cation that assumes that the use of �exible EV chargers
mostly impacts the electricity sector.

It is striking that the TIMES-BE model only chooses for V2H chargers whereas
the stylised model only chooses for V2G chargers. As mentioned before, the
choice for V2H chargers was reasoned to be chosen over V2G chargers as the
copper plate in the TIMES model is a limitation of the model that allows to avoid
distribution costs with V2H chargers while providing the same functionality of
V2G chargers. In the multi node setup of the stylised model, the multiple nodes
do not allow for bypassing the V2G behaviour. However, the multiple nodes
allow for the electric vehicles to move electricity from one node to another
which makes V2G chargers favourable. In the single node setup of the stylised
model, there is no distribution grid and as such the model cannot take advantage
of the di�erence in location of electricity demand. That reduces the usability
of �exible EV chargers and only the time component plays a role. Given the
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extreme charging pattern (all available or none available) stationary batteries
are needed to provide �exibility in time instead.

For the cost savings, we can see that for the TIMES-BE model there is a big
di�erence when considering multiple sectors and the electricity sector. That is,
the �exible EV chargers have the highest impact on the electricity sector and
the costs in the other sectors simply hide that impact. More importantly, we
can also see that, relatively speaking, the results of the two models are in the
same ball park. That indicates that we can potentially use the results of the
stylised model relative to the TIMES-BE model.

Table 7: Cost savings and most �exible EV charger that each model chooses.
The cost savings for the energy system planning models are the di�erence be-
tween a model run with and without �exible chargers.
* This is a simpli�ed calculation where it is assumed that the contribution of
the �exible chargers has the largest impact on the power system.

cost
savings
[109

EUR24]

cost
savings
[%]

most
�exible
chosen
charger
type

TIMES-BE (multi sector, single node) 8.70 0.46 V2H
TIMES-BE (single sector, single node)* 8.06 7.12 V2H
stylised model (single sector, single node) 0.0 0.0 /
stylised model (single sector, multi nodes) 2.76 9.91 V2G

This comparison is merely meant to provide nuance to the results of the stylised
model. In the following, we continue with the true purpose of the stylised
model: to experiment with equations that represent consumer preference inside
an energy system planning model.

In the following exercise we continue with the multi node setup. That setup
makes more sense for when we consider a di�erence in consumer preference
from short distance drivers and long distance drivers later on (Section 3.4).
Also, instead of performing a full analysis as in Section 2, here we focus on the
adoption and use of �exible chargers as a consequence of consumer preference.
Though, �rst we will have to derive general equations from the DCE to �t the
energy system planning model.

3.2 From DCE to energy system planning model

To integrate the results of the DCE in the energy system planning model we
have to transform the obtained utility for the adoption of �exible chargers to a
market share of �exible chargers. For this transformation we loosely follow the
example of Byun, Shin and Lee [2]. The trick is to transform the utility to a
probability �rst. Then, we assume that the probability for adopting a �exible
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charger is a good proxy for the market share of �exible chargers. For example,
when an individual has a probability of 50% to adopt a charger with a particular
feature (e.g. a V2H charger), we assume that 50% of a group (or cluster) of
individuals actually adopt the charger.

The utility functions of the DCE can be simpli�ed to:

Vik(x) = β0 + βx · x (1)

With

Vik the utility that individual i in latent class k has for attribute x, e.g. the
utility that an individual from the class of 'likely adopters' has for a V2H
charger

β0 the baseline utility for the conducted survey (typically disappears when con-
sidering the di�erence in utility between two attributes)

βx a coe�cient for attribute x, determined from the DCE

x value for attribute x, x can be continuous for some attributes, e.g. 50% for
the attribute of a minimum battery level, and x can be discontinuous for
other attributes, e.g. whether an energy retailer has access to the charger
or not.

In principle, the utility function also has interaction terms, i.e. the combined
e�ect of two attributes. However, these interaction terms are dropped here as
the DCE at hand does not consider these interaction terms either.

To obtain a probability function from the utility function, we need to assume a
probability distribution. We consider a common logistic distribution:

Pk(x) =
exp(Vk(x))

exp(β0) + exp(Vk(x))
(2)

with

Vk(x) the combined utility of all individuals in latent class k for attribute x

Pk(x) the probability or market share of a charger with features x due to la-
tent class k, e.g. 20% (P=20%) of the class of likely adopters (k=likely
adopters) adopts �exible chargers that always charge to a minimum bat-
tery level of 40% (x=40% minimum charge)

The relation between Pk and x is non-linear. To make use of this relation in a
linear model, we need to linearise the equation in a small interval and bind the
values of the attributes to that interval.

Pk(x) ∼ P0 + γkx · (x− x0) (3)

with
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P0 the probability of the point around which the probability function is lin-
earised

x0 the point around which the probability function is linearised

γkx a class speci�c linearised coe�cient for the relation between the attribute
value x and the market share for �exible chargers with these attributes

To obtain the full market share of the �exible chargers, we simply take the
weighted sum of the probabilities of the di�erent latent classes. For example,
if the classes consist of likely adopters and unlikely adopters and these make
up 20% and 80% of the entire group respectively, the weights for the sum are
20% and 80% for the probability of a likely adopter and the probability of an
unlikely adopter to adopt a �exible charger respectively.

The insertion of this equation in the energy system planning model is very
speci�c for each attribute. In the following we consider two examples, one for
each DCE. For the �rst DCE we focus on the �nancial concerns of the consumer.
For the second DCE we focus on the driving range anxiety of the consumers. For
each of these attributes, the values from the DCE in the context of the equation
for the linearised market share of �exible chargers can be found in Appendix A.

3.3 Energy system planning model for DCE on �nancial
concerns

To address the �nancial concerns of the consumer, we consider a �nancial reward
for adopting a charger with speci�c features. The �nancial reward is meant
to be interpreted as yearly savings on the energy bill. Because there are no
direct prices in an optimisation model (as opposed to an equilibrium model),
the interpretation is taken to be a bit more general to a reward for the adoption
of a charger.

To be clear, as in the baseline of the DCE, we start from a situation where there
is already a unidirectional charger without optimal charging, i.e. the vehicle is
always fully charged immediately after driving. The consumer then has a prob-
ability to adopt a �exible charger for a given reward. Similar to the scenario
analysis with TIMES-BE, we consider �exible chargers that are optimally con-
trolled4 but with di�erent directional capabilities, i.e. unidirectional charging,
V2H chargers and V2G chargers.

Due to how the probabilities are calculated for this (partial) selection of charger
types, the sum of the probabilities does not add to 1 and each charger type
needs to be considered independently. In other words, we need to make a
distinction between the unidirectional chargers (without optimal charging) that
can be converted to, e.g., V2H chargers and chargers that will be converted to,

4It is possible to study the e�ect on the di�erent control strategies, but it is assumed that

in the long term, �exible chargers are used primarily to gain a �nancial bene�t which should

after some redesigns of electricity contracts grow towards optimal control.
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e.g., V2H chargers. For the model that means that the market share has to be
adjusted accordingly:

fv · Pv(rv) (4)

with

v set of charger types [uni, V 2H,V 2G], i.e. optimal charging with a unidirec-
tional charger, a V2H charger and a V2G charger

fv representing the chargers that can change to charger type v

Pv(rv) representing the chargers that will change to charger type v, following
equation 3 for the yearly reward for the adoption of charger type v

rv the yearly reward associated to adopting a charger of type v

The interpretation of fv depends on the scale. For a single charger, fv is a
binary that denotes whether the charger considers that charger type or not. For
multiple chargers, fv becomes an integer. For clustered chargers, we can relax
fv to a percentage (or fraction). Since we are already working with a clustered
unit commitment model, we opt for the latter interpretation. Accordingly, the
fraction of all charger types cannot exceed 1:5

∑

v

fv ≤ 1 (5)

The market share for each charger is used in the charging pattern of the electric
vehicles and the calculation of the costs of the rewards in the objective function.

For the charging pattern of electric vehicles p we initially assume that each
charger charges without optimal charging. That charging pattern only depends
on the driving pattern and as such is predetermined for the simulation, i.e. P e.

When a charger converts to a �exible charger, the charging pattern of the cluster
needs to be adjusted for the market share of the �exible charger fv · Pv(rv).
Additionally we need to add variables for charging pc (and discharging pd if
applicable). Finally, we need to repeat this for every charger type, resulting in
the following equation:

pch,t = −P e
ev,t · (1−

∑

v

fv · Pv(rv)) +
∑

v

pdev,v,t − pcev,v,t (6)

with

pch,t the actual charging pattern of the clustered chargers ch at time t

5For the binary interpretation we would have the same constraint but with binary variables

and for the integer interpretation the sum of fv would have to be equal or smaller than the

number of chargers.
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P e
ev,t the expected charging pattern of electric vehicle ev at time t if the charger

were a unidirectional charger without optimal control

1−∑
v fv · Pv(rv) the share of unidirectional chargers without optimal control,
expressed as the remainder after the shares of the di�erent types of �exible
chargers

pcev,v,t the �exible charging of electric vehicle ev at charger type v in the cluster
of chargers

pdev,v,t the �exible discharging of electric vehicle ev at charger type v in the
cluster of chargers

Accordingly, the �exible charging and discharging of each charger type are bound
by the market share of the corresponding charger type. In that same bound we
can also include some speci�cations on the charging pattern. For example, opti-
mal charging is only bound by the market share but solar charger is additionally
bound by the solar pattern. Similarly, a V2H charger is not able to discharge so
the bound should be 0 regardless of the market share. These additional caveats
in the charging pattern are included in the parameter A.

pcev,v,t ≤ fv · Pv(rv) · Cp
ch ·Ac

v (7)

pdev,v,t ≤ fv · Pv(rv) · Cp
ch ·Ad

v (8)

with

Cp
ch the total capacity of the clustered chargers ch, equal to the maximum of

P e
ev,t

Ac
v the charging mode of charger type v, e.g. 1 for optimal charging and a solar

pro�le for solar charging (though we only consider optimal charging here)

Ad
v the discharging mode of charger type v, e.g. 1 for bidirectional charging and

0 for unidirectional charging

For the fraction of in�exible chargers (1 −∑
v fv · Pv(rv)), there is also a con-

straint that guarantees that the vehicle is fully charged as soon as possible,
taking into account when the vehicle is connected to a charger and the maxi-
mum charge output of the charger.6 Both the docking and the charging rate
are known upfront and as such are predetermined in the simulation.

(1−
∑

v

fv · Pv(rv)) ·Ai
ev,t · Ce

ev ≤ eev,t ≤ Ce
ev (9)

with
6This equation is actually from the perspective of the �eet of electric vehicles and assumes

that all types of chargers are available in the same ratio in each cluster of chargers. With

the introduction of sets of which �eets pass by which cluster of chargers, we can make the

necessary distinction. But for the simple setup for the stylised model there is no need for that.
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Ai
ev,t a binary parameter7 that indicates when the battery of a vehicle attached

to an in�exible charger should be full, i.e. as soon as possible

Ce
ev the maximum energy level of the battery of the vehicle

eev,t the current energy level of the battery of the vehicle

That marks an end to the modi�cations to the formulation of electric vehicles
and chargers in the energy system planning model. All that is left is to add the
yearly reward to the additional investment cost of the �exible charger in the
objective function.

min
∑

v

DF1 · Ichv · fv · Pv(rv) · Cp
chu +

∑

v

∑

y

∆DFy · rv · FARv · Cp
ch (10)

with

DFy the discount factor in milestone year y

∆DFy the discount factor for each milestone year y and all the years the mile-
stone year represents

Ichv the additional investment cost for a charger of type v

FARv an estimate of the fraction of charger type v due to the reward of adopt-
ing charger type v (used as a proxy of fv · Pv(rv) to avoid a non linear
objective function)

With these adjustments of the formulation, we are able to address the �nancial
concerns of the EV owners in the energy system planning model. As such we
can study the competition between addressing the �nancial concerns of the EV
owners (i.e. the model can provide a compensation per �exible charger) and
additional investments in capacity for electricity generation or batteries.

In order for the equations above to be linear, either the fraction of di�erent
types of chargers can be a variable or the reward can be a variable but they
cannot be variables at the same time. Logically, we �rst take the fraction of
the di�erent types of chargers as a variable with a �xed reward equal to x0.
The fractions that are obtained from that model run can then serve as the �xed
values for the fractions in a run where the reward is variable.

Using the coe�cients from the DCE (Tables 8 and 9), when we run the model
with variable fractions, the model consistently chooses V2G chargers over V2H
and unidirectional chargers. So, for the run with the variable reward, we only
need to consider V2G chargers. To obtain a good estimate for the fraction of
V2G chargers and in�exible chargers we take an iterative approach until the
�xed fraction FARV 2G is su�ciently close to fV 2G ·PV 2G(rV 2G) with fV 2G = 1
as all chargers are able to convert to V2G chargers.

7Not to be confused with a binary variable.
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For this particular setup, the additional cost of the reward given to the owner
of the �exible EV charger, does not limit the adoption and use of �exible EV
chargers as can be seen from Figure 11. However, recall that the competition
with stationary batteries has been arti�cially increased to correspond better
to the results from the TIMES BE model. While it is not shown here, in a
more competitive setup, the reward required by the consumers actually reduces
the competitiveness of �exible EV chargers compared to stationary batteries.
Implying an incentive to increase consumer acceptance of �exible EV chargers
and as such reduce the required reward.

It is possible to go in much more detail of the case study, but here we want to
focus on the modelling of DCEs in energy system planning model. The following
section will cover another DCE with di�erent equations for the same setup.

Figure 11: Charging pattern for 4 week days throughout the year for an electric
vehicle associated to the S node in the case the model has access to �exible
chargers. The charging pro�le is the charge pattern for the in�exible chargers
(as well as the �exible chargers if they would be used in�exibly) whereas the
�exible chargers follow the charge and discharge pattern.

3.4 Energy system planning model for DCE on driving
range anxiety

To address the driving range anxiety, we only consider the minimum battery
level (as the other options like road side services and an emergency battery are
in principle similar to reserving a part of the battery for emergencies). However,
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in contrary to the case study on the �nancial concerns, the DCE is not about
adopting a �exible charger but about ceding control to a third party. That
implies that we do not need to make the distinction between the chargers that
can be converted and those that will be converted. For simplicity, we further
assume that the charger is not used optimally when the control of the charger
is not ceded to a third party. In other words, the available �exibility from the
EV chargers equals the probability that the consumer cedes control to a third
party.

In this setup, we only consider 1 charger type and we separate the data from the
second DCE in two latent classes. Typically, DCEs split the data according to
'likely adopters' and 'unlikely adopters'. Alternatively, some inspiration could
be obtained from Sridhar et al. who challenge certain myths regarding various
latent classes [19]. However, since we discuss the driving range anxiety, it is
actually more interesting for our work to split the data into groups with a short
driving range and those with a long driving range.

The bound on the �exible charging and discharging is similar to the previous
setup. Though, instead of using the probability of adopting a �exible charger
in function of the reward, we use the probability of ceding control in function
of the minimum battery level.

pch,t = −P e
ev,t · (1− Pve(bve)) + pdev,t − pcev,t (11)

pcch,t ≤ Pve(bve) · Cp
ch ·Ac (12)

pdch,t ≤ Pve(bve) · Cp
ch ·Ac (13)

with

Pve(b) the linearised probability of vehicle owner class ve using the charger
optimally when the battery level is b

The minimum battery level only a�ects the equation for the state of the battery.
Similar to equation 9, the charging pattern needs to consider the driving pattern
and the charging rate (combined in parameter A which is predetermined in the
simulation). Di�erent to equation 9, the minimum battery level of the �eet is
split in two parts: for the chargers that are not controlled optimally (1−Pve(bve))
the batteries are fully charged as soon as possible and for the the chargers that
are controlled optimally (Pve(bve)) the batteries are charged to the minimum
battery level b as soon as possible.

(1− Pve(bve)) ·Ai
ev,t · Ce

u + FABve · bve ·Abl
ev,ve,t · Ce

u ≤ eu,t ≤ Ce
u (14)

with
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Abl
ev,ve,t a binary parameter that indicates whether the minimum battery level

needs to be accounted for vehicle ev, vehicle type ve and time t, taking
into account the driving pattern and the charging rate (predetermined)

FABve estimated fraction corresponding to the minimum battery level (used
as a proxy of Pve(bve) to avoid a non linear constraint)

With these adjustments of the formulation, we are able to address the driving
range anxiety of the EV owners in the energy system planning model. The
charging pattern in Figure 12 shows that the limit on the battery level is too
restricting for the model to leverage the use of �exible EV chargers. The only
reason there are �exible chargers installed is because of the bounds on the
consumer preference for the minimum battery level set by the results of the
DCE (see Table 9). That implies in this case we should have conducted the
survey for lower rates of adoption (or assume the results are linear and allow
them to go to zero).

Figure 12: Charging pattern for 4 week days throughout the year for an electric
vehicle associated to the S node in the case when there is a minimum battery
level. The charging pro�le is the charge pattern for the in�exible chargers (as
well as the �exible chargers if they would be used in�exibly) whereas the �exible
chargers follow the charge and discharge pattern.

3.5 Comments on the modelling exercise

In the previous subsections we have modelled di�erent attributes from di�erent
DCEs. While there is some common ground for the corresponding equations,
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there are also parts that are very speci�c for each of these attributes. That
requires a careful design of the formulation. One part is the interpretation of
the DCE. We have seen that some attributes are very similar from the point of
view of the model (e.g. the emergency battery and the minimum battery level of
the vehicle) allowing us to concentrate on only one of these attributes. We have
also seen that the complexity of the equations is also di�erent depending on the
considered attributes/DCE (e.g. compare Subsections 3.3 and 3.4). Here, we
have been working with existing DCEs, but, due to the speci�c design of the
equations, it is clearly advantageous to design the survey and the energy model
at the same time.

Even when the consumer preference is linearised, the equations become non-
linear rather quickly due to multiplications of variables (typically quadratic as
it is a multiplication of a variable with a fraction of chargers depending on that
same variable). While it is possible to deal with quadratic equations, here we
have opted to keep working with linear equations. In some cases that required us
to use a best guess for some of the variables (e.g. when dealing with fv ·Pv(rv))
whereas in other cases that required us to take an iterative approach (e.g. when
dealing with rv · FARv). In the former case, the quality of the results depend
on the quality of the guess. In the latter case, with the iterative approach we
venture into the domain of agent based modelling as the iterative approach is
prevalent there. That raises the question how this methodology holds up against
such an agent based model. However, that is left for future research.

Due to the limited setup and scope of the stylised model, the results of that
model are not directly usable to make conclusions for the Belgian situation. Yet,
by comparing the stylised model to the TIMES-BE model, we can provide some
nuance to the results of the TIMES-BE model with the modelling insights of the
stylised model. Though, we also need to take into account that import/export,
curtailment and stationary batteries have been arti�cially altered to make the
modelling exercise more clear. Regardless, while the setup of the stylised model
without consumer preference prefers to use �exible chargers (see Section 3.1),
we see that the consumer preferences pose constraints on the model that the
model tries to avoid by various means (i.e. the aforementioned import/export,
curtailment and stationary batteries). Any energy system planning model is
quite sensitive to all of these constraints. On one hand that means that various
pathways are possible and should be considered in scenarios and on the other
hand that means that consumer preference is not to be neglected in a pathway
that includes the use of �exible EV chargers.

4 Conclusion

Flexible EV chargers have a large technical potential to provide �exibility to
the distribution grid. However, the potential is only as much as consumers are
willing to adopt and use �exible EV chargers. Bringing consumer preference to
energy system planning models is not a trivial task.
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In our study, we have explored the indirect consideration for consumer preference
in a post analysis with the TIMES-BE model as well as the direct integration
of consumer preference in a stylised model. Whereas the indirect approach is
immediately accessible for existing models (which may be particularly interest-
ing for transmission system operators with their current adequacy modelling
exercises), the direct approach leads to more accurate results for the actual
availability and use of �exibility in the energy system.

In the indirect approach, we used TIMES-BE to study the adoption of �exible
EV chargers in Belgium. For a given maximum availability of �exible chargers,
the model can choose between unidirectional chargers, vehicle to home (V2H)
chargers and vehicle to home and grid (V2G) chargers. However, due to the cop-
per plate approach in the TIMES-BE model, the model is not able to e�ectively
use the V2G chargers and as such only chooses V2H chargers. Regardless, the
scenario analysis with the TIMES-BE model starts from the PATHS2050 sce-
narios and extends them with scenarios without access to �exible EV chargers
and full access to �exible EV chargers. In post analysis, the di�erence in total
system costs between the scenarios with and without �exible EV chargers pro-
vides a remuneration budget that can be used to reward adopters of �exible EV
chargers. This remuneration budget is then compared to the stated expected
return on investment from a DCE (in the form of an implicit discount rate).
It is found that the remuneration budget generally satis�es the requirements of
the consumer.

In the direct approach, we chose to build a new formulation for a stylised model
to be able to experiment more freely with the model equations. The setup
for this model is limited and accordingly the focus is more on the modelling
than the actual results. Additionally, we had to arti�cially change settings for
import/export, curtailment and stationary batteries to align the behaviour of
the stylised model to the TIMES model. Part of the modelling exercise was
general for any DCE but another part was very speci�c to each of the attributes
in the DCE. We provided examples for two attributes from two di�erent DCEs:
the adoption of �exible EV chargers for a given reward and ceding control of
�exible chargers for a given minimum battery level during charging. The results
show that the consumer preferences pose important constraints to the problem
which on one hand provides us a more accurate picture of the availability of
�exibility from �exible EV chargers and on the other hand possibly steer the
investments in �exibility towards other �exibility measures.

While the results of the stylised model are not usable in absolute terms, we
can use the results relative to those of the TIMES-BE model. That is, the
stylised model shows that consumer preference is important to consider during
the decision process as it reduces the competitiveness of �exible EV chargers.

In conclusion, whether we use the direct or indirect approach, the consumer
preferences impose an important constraint on the availability of �exibility from
�exible EV chargers and need to be considered during energy system planning.
For future studies, we need to consider consumer preferences (similar to the
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stylised model) at the decision process of a tool that is calibrated properly to
represent the Belgian situation (similar to the TIMES-BE model). We also call
for further collaboration between social sciences and energy system modelling
as well as further studies on the role of our direct approach compared to agent
based modelling.
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A DCE

This appendix contains the data from the DCEs for the energy system planning
models. The data is split according to the two surveys that were conducted.

A.1 DCE on �nancial concerns

Px(r) = P0 + γx + γr · (r − r0) (15)

where x ∈ [uni, V 2H,V 2G] with uni for unidirectional charging, V2H for bidi-
rectional charging at home and V2G for bidirectional charging with the grid.

Table 8: Parameters and values for the linearised equation from the DCE
Parameter Value

P0 0.612
r0 400.0

rmin 30.0
rmax 810.0
γr 0.000349
γuni 0.0121
γV 2H 0.0146
γV 2G 0.0331

A.2 DCE on driving range anxiety

Pc(r) = Pc,0 + γc,b · (b− bc,0) (16)

where c ∈ [short, long] with short for the class of short distance drivers and long
for the class of long distance drivers.
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Table 9: Parameters and values for the linearised equation from the DCE
Parameter Value for

short
distance
drivers

Value for
long

distance
drivers

P0 0.370 0.439
b0 0.20 0.20

bmin 0.0 0.0
bmax 0.5 0.5
γb 0.303 0.346

B TIMES-BE

This analysis employs the TIMES modelling framework, a long-established tool
developed under the IEA's Energy Technology Systems Analysis Program (ET-
SAP) for energy system planning [10]. TIMES enables the identi�cation of
cost-optimal transition pathways by minimizing total system costs under a wide
range of technical and policy constraints [10]. It integrates detailed representa-
tions of current technologies, future demand projections, resource availabilities,
and techno-economic parameters, producing outputs such as investment deci-
sions, activity levels, and energy �ows across the planning horizon [10].

B.1 Data for electric vehicle chargers

Table 10: Financial characterisation of EV chargers
Sector Charger type Typical size [kW] CAPEX [¿] CAPEX [¿/kW] Source

Residential (Home) Uncontrolled 7.4 1541.4 208.3 ICCT[10] , EV[9]
Residential (Home) Flexible 7.4 1747.1 236.1 ICCT[10], Wallbox, EV[9]
Residential (Home) Flex with V2H/V2G 7.4 2330.3 314.9 Wallbox, EV[9]
Commercial (Work) Uncontrolled 7.4 2063.1 278.8 ICCT[10] , EV[9]
Commercial (Work) Flexible 7.4 2153.4 291.0 ICCT[10] ,Wallbox, EV[9]
Commercial (Work) Flex with V2B/V2G 7.4 3902.0 527.3 Wallbox, EV[9]

C Stylised model

This appendix provides the full linear formulation of the stylised model for
adequacy with low voltage �exibility.

These are nodal equations. By convention, the power to a node is considered
positive.8

8The terms 'power' and 'energy' are used in the general physics sense. Even more so,

whenever 'power' is used in this formulation, it is meant as the accumulated energy during 1

time step. It is still called 'power' because the formulation still holds when the step duration

is decreased to in�nitesimally small values.
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Also note that upper case or Greek letters represent parameters whereas lower
case represents variables. Subscripts are indices and superscripts provide addi-
tional information.

For reference, we �rst share the general results of the model before providing
the full model.

C.1 Results for Belgium

Figure 13: Power production for 4 week days throughout the year.

37



Figure 14: Import (positive) and export (negative) for 4 week days throughout
the year.

C.2 Sets

v: charger mode

ve: ev types

veevevu: map between ev and evtypes

vd: subset that triggers a self consumption constraint

n: node, de�ned by the units attached to it

l: link, comprised of two nodes

h: subset of node, home node containing, e.g., demand, HP, PV and EV, used
to determine the monthly peak demand

hchchu: subset of home, without charger

u: unit, e.g. conversion unit, demand, load shedding, �ex, etc., excluding evu

lu: subset of unit, link ends

evu: electric vehicle clusters, each cluster can have di�erent types (or users)

chu: subset of unit, charger clusters (or parking lot), each cluster can have
di�erent types

hup: subset of unit, heat pump

38



su: subset of unit, storage unit

du: subset of unit, demand unit

eu: subset of unit, export

iu: subset of unit, import

ru: subset of unit, renewables

gu: subset of unit, generation unit

griechhpu: subset of unit, generation, renewable, import/export, charger, heat
pump

grsdieu: subset of unit, generation, renewable, storage, demand, import/export

grsu: subset of unit, generation, renewable and storage unit

dlu: subset of unit, demand and line

shpevu: subset of unit, storage, electric vehicle and heat pump

passbychu: all electric vehicles that pass by the charger chu over all times

passchu,t: all electric vehicles that pass by the charger chu at time t

routeevu,t: all chargers that are part of the route of electric vehicle evu at time
t

t: time steps, coincides with the lowest time scale, typically hours

d: days

m: months

y: years

Yt: year corresponding to a time step

Ym: year corresponding to a month

Td: time steps of a day

Tm: time steps of a month

Ty: time steps of a year

mtsgru: time steps at which unit u is under maintenance (for renewable units
it is important to also adjust the pro�le)

ctevu: time steps at which the electric vehicle evu needs to be full

MUTtu,t: return the end and start time index corresponding to the MUT when
committed in time t; this will only be exact for a constant step duration

MDTtu,t: return the end and start time index corresponding to the MUT when
committed in time t; this will only be exact for a constant step duration

Lyu,y: return the start and end year index corresponding to the life time when
installed in year y; this will only be exact for a constant year step duration,
corresponding to milestone years
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C.3 Parameters

∆Tt: duration of a time step

∆DFt: conversion factor for the present value for each time step for the duration
of the year

DFy: conversion factor for the present value for each year

∆DFy: conversion factor for the present value for each year for the duration of
the year

R+
: likelihood of worst upward scenario

R−
: likelihood of worst downward scenario

TAXCO2
: tax on carbon emissions

V OLL: value of lost load

Cpeak
: cost for peak production in a month

γr,0
v : constant parameter for the linearised market coe�cient between a �nancial

reward and a charger mode

γr
v : coe�cient (from DCE) for the linearised market coe�cient between a �nan-

cial reward and a charger mode

Ar,0
v : baseline for the �nancial reward for a charger mode

Ar,min
v : minimum value for the �nancial reward (due to the linear interval)

Ar,max
v : maximum value for the �nancial reward (due to the linear interval)

γb,0
ve,v: constant parameter for the linearised market coe�cient between a battery

level and a charger mode for a driver's preference

γb
ve,v: coe�cient (from DCE) for the linearised market coe�cient between a

battery level and a charger mode for a driver's preference

Ab,0
ve,v: baseline for the battery level for a charger mode

Ab,min
ve,v : minimum value for the battery level (due to the linear interval)

Ab,max
ve,v : maximum value for the battery level (due to the linear interval)

θ: comfort band expressed in percentage of the indoor temperature

Iu or Ipu: investment cost per installed power capacity

Ieu: investment cost per installed energy capacity

Ichv : investment cost per installed power capacity of a charger of a particular
type

SCp
grsu: sunk power capacity

SCe
su: sunk energy capacity
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FOMgrsu or FOMp
grsu: �xed operation and maintenance cost per installed

power capacity

FOMe
su: �xed operation and maintenance cost per installed energy capacity

V OMgrsdieu: variable operation and maintenance cost during operation per unit
of energy (also used for demand response and import/export)

SUCgu: start-up cost

Lgrsu: lifetime

ηu: e�ciency

ηmin
u : part load e�ciency

ηsu: storage e�ciency

ηcu: charging e�ciency

ηdu: discharging e�ciency

ηll: line e�ciency

ηevu : charge/discharge e�ciency of an electric vehicle (assumption that ηc = ηd

and η is the same for each charger)

ηgainu,t : temperature (and thus time) dependent heat pump coe�cient

ηlossu,t : temperature (and thus time) dependent building coe�cient

MUTu: minimum up time

MDTu: minimum down time

FCO2
u : fraction of the emissions that is not captured

F ramp
u : fraction of the power capacity that can be ramped up or down during

one time step

FCramp
u : fraction of the installed capacity that can be ramped up in consecutive

years

F response
u : fraction of available demand response

F curtail
u : fraction of allowed curtailment

F shp
u : fraction of smart heat pumps

F res
: fraction of the renewable capacity is used as the potential deviation of
the prediction

F dres
: fraction of the peak demand is used as the potential deviation of the
prediction

FARv: estimated fraction of charger types due to the reward

FABveev,v: estimated fraction of charger types due to the minimum battery
level of vehicle type
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Ac
v,t: charging pattern for a class/attributes; heuristic for dumb charging or

solar charging and 1 for optimal charging

Ad
v,t: discharging pattern for a class/attribute; 0 for unidirectional or 1 for bidi-

rectional

Adrive
evu,t : driving pattern

Abl
evu,ve,v,t: activates the minimum battery level constraint for �exible chargers

only when the electric vehicle is not driving and has had the chance to
reach the minimum battery level (obtained with a heuristic).

Abl,fix
evu,t : activates the minimum battery level constraint for in�exible chargers

only when the electric vehicle is not driving and has had the chance to
reach the minimum battery level (obtained with a heuristic).

P e
u,t: power pro�les for predicted demand, scheduled intermittent source, im-

port/export signal (between 0 and 1) and electric vehicle charging

P drive
u : power consumption while driving

P peak
u,y : peak power

Pmin
gieu : minimum (national or international) power production

Pmax
gieu : maximum (national or international) power production

Cp
u: a cap on the installed power capacity

Ce
u: a cap on the installed energy capacity

Cl+
l : positive bound on capacity of a line in node i, set Cl+

l = 0 whenever ηll ̸= 1
(because a directional line goes from i to j)

Cl−
l : negative bound on capacity of a line in node i, typically Cl−

l = Cl+
l

whenever ηll = 1
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C.4 Variables

All variables are bound to be larger than zero, unless speci�ed otherwise

fv: feature or fraction of charger type

arv: attribute level for �nancial reward considered by the DCE; for the current
data set, arv and abve,v should not be in the model at the same time

abve,v: attribute level for �nancial reward considered by the DCE; for the current

data set, arv and abve,v should not be in the model at the same time

pu,t: operation power of unit u at time t, bidirectional by default

peu,t: supporting variable used as a modi�ed version of the operation power to
create an absolute value, to enable curtailment, etc.

pcsu,t: charge power

pdsu,t: discharge power

pcevu,v,t: class/attribute speci�c charge power

pdevu,v,t: class/attribute speci�c discharge power

pd,upperboundchu,v,t : term used to lower the available capacity for reserves for V2H,
it is lower than the upper bound for V2G and it is lower than the upper
bound of the demand in the home node

plldu,t: scheduled load shedding

presponsedu,t : demand response

presponse,edu,t : positive di�erence between demand response and actual pro�le, used
for cost calculations

pmh,m: monthly peak use of a connection (demand or supply) of a home

cgrsu,y: power capacity of unit u at time t

cugrsu,y: installed power capacity

cdgrsu,y: removed power capacity

ngu,t: number of committed units

nu
gu,t: start up of committed units

nd
gu,t: shut down of committed units

eshpevu,t: state of energy storage

cesu,y: available energy capacity

ce,usu,y: installed energy capacity

ce,dsu,y: removed energy capacity
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r+griechhpu,t: upward spinning reserves of unit u at time t and scenario s

r−griechhpu,t: downward spinning reserves of unit u at time t and scenario s

rc,+su,t: upward spinning reserves of unit u that is charging at time t and scenario
s

rc,−su,t: downward spinning reserves of unit u that is charging at time t and sce-
nario s

rd,+su,t: upward spinning reserves of unit u that is discharging at time t and sce-
nario s

rd,−su,t: downward spinning reserves of unit u that is discharging at time t and
scenario s

re,+shpevu,t: upward energy reserves

re,−shpevu,t: downward energy reserves

rlldu,t: load shedding in upward reserves

rl,+dlu,t: transport of reserves in the upward balancing equation (also used for
demand response), bidirectional

rl,−dlu,t: transport of reserves in the downward balancing equation (also used for
demand response), bidirectional
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C.5 Objective function

min
∑

h

∑

m

DFYm
· pmh,m · Cpeak (17)

+
∑

u∈chu

∑

v

∑

y

∆DFy · Cp
u · FARV · arv (18)

+
∑

chu

∑

evu∈passbychu

∑

v

DF1 · Ichv · f ′
evu,v · Cp

chu (19)

+
∑

u∈du

∑

t

∆DFt · V OMu,t ·∆Tt · presponse,eu,t (20)

+
∑

u∈du

∑

t

∆DFt · V OLL ·∆Tt · (pllu,t +R+ · rllu,t) (21)

+
∑

u∈su

∑

y

DFy · Ieu · ce,uu,y +∆DFy · FOMe
u · ceu,y (22)

+
∑

u∈su

∑

y

DFy · Ipu · cp,uu,y +∆DFy · FOMp
u · cpu,y (23)

+
∑

u∈su

∑

t

∆DFt · V OMu ·∆Tt · peu,t (24)

+
∑

u∈su

DF1 · Ipu · (cpu,1 − SCp
u) +DF1 · Ieu · (ceu,1 − SCe

u) (25)

+
∑

u∈ieu

∑

t

∆DFt · V OMu · (2 · P e
u,t − 1) ·∆Tt · (pu,t +R+ · r+u,t −R−

u,t · r−u,t)

(26)

+
∑

u∈ru

∑

y

DFy · Iu · cuu,y +∆DFy · FOMu · cu,y (27)

+
∑

u∈ru

∑

t

∆DFt · V OMu ·∆Tt · (peu,t −R+ · r+u,t +R−
u,t · r−u,t) (28)

+
∑

u∈ru

DF1 · Iu · (cu,1 − SCp
u) (29)

+
∑

u∈gu

∑

y

DFy · Iu · cuu,y +∆DFy · FOMu · cu,y (30)

+
∑

u∈gu

∑

t

∆DFt · SUCu · nu
u,t (31)

+
∑

u∈gu

∑

t

∆DFt · TAXCO2 · FCO2
u ·∆Tt · (peu,t + nu,t · Pmin

u ) (32)

+
∑

u∈gu

∑

t

∆DFt · TAXCO2 · FCO2
u ·∆Tt · (R+ · r+u,t −R−

u,t · r−u,t) (33)

+
∑

u∈gu

∑

t

∆DFt · V OMu ·∆Tt · (peu,t + nu,t · Pmin
u ) (34)
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+
∑

u∈gu

∑

t

∆DFt · V OMu ·∆Tt · (R+ · r+u,t −R−
u,t · r−u,t) (35)

+
∑

u∈gu

DF1 · Iu · (cu,1 − SCp
u) + ∆DF1 · SUCu · nu,1 (36)
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C.6 Nodal constraints

∀n, t :
∑

u∈n

pu,t = 0 (37)

∑

u∈n

r+u,t +
∑

u∈su∪n

rc,+u,t + rd,+u,t +
∑

u∈dlu∪n

rl,+u,t +
∑

u∈du∪n

rllu,t

−
∑

u∈du∪n

F dres · P peak
u,Yt

−
∑

u∈ru∪n

F res · cu,Yt
= 0 (38)

∑

u∈n

r−u,t +
∑

u∈su∪n

rc,−u,t + rd,−u,t +
∑

u∈dlu∪n

rl,−u,t

−
∑

u∈du∪n

F dres · P peak
u,Yt

−
∑

u∈ru∪n

F res · cu,Yt
= 0 (39)

∀h,m, t ∈ Tm

pmh,m ≥ −
∑

u∈h

pu,t (40)

pmh,m ≥
∑

u∈h

pu,t (41)

C.7 Link

∀(i, j) ∈ l, t :

pi,t ≤ Cl+
l (42)

pi,t ≥ −Cl−
l (43)

pi,t + rl,−i,t ≤ Cl+
l (44)

pi,t + rl,−i,t ≥ −Cl−
l (45)

pi,t + rl,+i,t ≤ Cl+
l (46)

pi,t + rl,+i,t ≥ −Cl−
l (47)

pi,t + rl,+i,t + rl,−i,t ≤ Cl+
l (48)

pi,t + rl,+i,t + rl,−i,t ≥ −Cl−
l (49)

pj,t = −ηll · pi,t (50)

rl,−j,t = −ηll · rl,−i,t (51)

rl,+j,t = −ηll · rl,+i,t (52)
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C.8 Demand

∀u ∈ du, t :

pu,t = −(1− F response
u ) · P e

u,t − presponseu,t + pllu,t (53)

pu,t ≤ 0 (54)

rllu,t ≤ −pu,t + F dres · P peak
u,Yt

(55)

rl,+u,t ≤ presponseu,t (56)

rl,−u,t ≥ −presponseu,t (57)

presponseu,t ≥ 0 (58)

(59)

presponse,eu,t ≥ F response
u · P e

u,t − presponseu,t +R+ · rl,+u,t −R− · rl,−u,t
(60)

presponse,eu,t ≥ −F response
u · P e

u,t + presponseu,t −R+ · rl,+u,t +R− · rl,−u,t
(61)

∀u ∈ du, d : (62)
∑

t∈Td

∆Tt · presponseu,t −
∑

t∈Td

∆Tt · F response
u · P e

u,t = 0 (63)

∑

t∈Td

∆Tt · rl,+u,t = 0 (64)

∑

t∈Td

∆Tt · rl,−u,t = 0 (65)

C.9 Import/Export

∀u ∈ ieu, t :

− (Pmax
u − Pmin

u ) · P e
u,t + r−u,t ≤ pu,t (66)

pu,t ≤ (Pmax
u − Pmin

u ) · (1− P e
u,t)− r+u,t (67)
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C.10 Storage

∀u ∈ su :

cu,1 ≥ SCp
u (68)

ceu,1 ≥ SCe
u (69)

∀u ∈ su, t :

pu,t = ηdu · pdu,t − pcu,t (70)

peu,t = ηdu · (pdu,t +R+ · rd,+u,t −R− · rd,−u,t )

+ pcu,t −R+ · rc,+u,t +R− · rc,−u,t (71)

rc,+u,t ≤ pcu,t ≤ cu,Yt
− rc,−u,t (72)

rd,−u,t ≤ pdu,t ≤ cu,Yt − rd,+u,t (73)

re,+u,t ≤ eu,t ≤ ceu,Yt
− re,−u,t (74)

re,+u,t = (rc,+u,t + rd,+u,t ) ·∆Tt (75)

re,−u,t = (rc,−u,t + rd,−u,t ) ·∆Tt (76)

∀u ∈ su, t ∈ mtu

pu,t = 0.0 (77)

∀u ∈ su, y :

eu,Ty [1] = ηsu · eu,Ty [end]

+ ηcu ·∆TTy [1] · pcu,Ty [1]
−∆TTy [1] · pdu,Ty [1]

(78)

cuu,y ≤ Cp
u − cu,y (79)

ce,uu,y ≤ Ce
u − ceu,y (80)

∀u ∈ su, y, t ∈ Ty[2 : end] :

eu,t = ηsu · eu,t−1 + ηcu ·∆Tt · pcu,t −∆Tt · pdu,t (81)

− pu,t + F ramp
u · cu,Yt

+ pu,t−1 ≥ 0 (82)

pu,t + F ramp
u · cu,Yt

− pu,t−1 ≥ 0 (83)

∀u ∈ su, y[2 : end] :

cu,y = cu,y−1 + cuu,y−1 − cdu,y−1 (84)

ceu,y = ceu,y−1 + ce,uu,y−1 − ce,du,y−1 (85)

− cu,y + FCramp
u · Cp

u + cu,y−1 ≥ 0 (86)

− ceu,y + FCramp
u · Cp

u + ceu,y−1 ≥ 0 (87)
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∀u ∈ su, (yi, yj) ∈ Ly[1] (88)

yj∑

y=yi

cdu,y ≥ cu,1 (89)

yj∑

y=yi

ce,du,y ≥ ceu,1 (90)

∀u ∈ su, (yi, yj) ∈ Ly (91)

yj∑

y=yi

cdu,y ≥ cuu,yi (92)

yj∑

y=yi

ce,du,y ≥ ce,uu,yi (93)
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C.11 Electric vehicle and charger

f ′
evu,v = fv · (γr,0

v + γr
v · (arv −Ar,0

v ))

+ fv · (γb,0
veevevu,v + γb

veevevu,v · (abveevevu,v −Ab,0
veevevu,v))

(94)
∑

v

fv ≤ 1 (95)

∀v
0 ≤ fv ≤ 1 (96)

Ar,min
v ≤ arv ≤ Ar,max

v (97)

∀ve, v
Ab,min

ve,v ≤ abve,v ≤ Ab,max
ve,v (98)

∀chu, t
pchu,t =

∑

evu∈passchu,t

−P e
evu,t · (1−

∑

v

f ′
evu,v)

+
∑

v

−pcevu,v,t + pdevu,v,t (99)

r+chu,t ≤
∑

evu∈passchu,t

∑

v

pcevu,v,t (100)

∑

evu∈passchu,t

∑

v

pcevu,v,t ≤

∑

evu∈passchu,t

∑

v

f ′
evu,v · Cp

chu ·Ac
v,t − r−chu,t (101)

r−chu,t ≤
∑

evu∈passchu,t

∑

v

pdevu,v,t (102)

∑

evu∈passchu,t

∑

v

pdevu,v,t ≤
∑

v

pd,upperboundchu,v,t − r+chu,t

(103)

∀chu, v, t
pd,upperboundchu,v,t ≤

∑

evu∈passchu,t

f ′
evu,v · Cp

chu ·Ad
v,t (104)

∀chu, v ∈ vd, t (105)
∑

evu∈passchu,t

pdevu,v,t ≤ −
∑

u∈hchchu

pu,t (106)

pd,upperboundchu,v,t ≤ −
∑

u∈hchchu

pu,t (107)
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∀evu, v, t :
pcevu,v,t ≤

∑

chu∈routeevu,t

f ′
evu,v · Cp

chu ·Ac
v,t (108)

pdevu,v,t ≤
∑

chu∈routeevu,t

f ′
evu,v · Cp

chu ·Ad
v,t (109)

∀evu, t (110)

re,+evu,t =
∑

chu∈routeevu,t

r+chu,t ·∆Tt (111)

re,−evu,t =
∑

chu∈routeevu,t

r−chu,t ·∆Tt (112)

eevu,t ≥ re,+evu,t + (1−
∑

v

f ′
evu,v) ·Abl,fix

evu,t · Ce
evu

+
∑

v

FABveevevu,v · abveevevu,v ·Abl
evu,veevevu,v,t · Ce

evu

(113)

eevu,t ≤ Ce
evu − re,−evu,t (114)

∀evu, t ∈ ct (115)

eevu,t = Ce
evu (116)

∀evu, y :

eevu,Ty [1] = eevu,Ty [end] − P drive
evu ·∆TTy [1] ·Adrive

evu,Ty [1]

+∆TTy [1] · ηevevu · P e
evu,Ty [1]

· (1−
∑

v

f ′
evu,v)

+ ∆TTy [1] · ηevevu · (
∑

v

pcevu,v,Ty [1]
− pdevu,v,Ty [1]

) (117)

∀evu, t ∈ Ty[2 : end] :

eevu,t = eevu,t−1 − P drive
evu ·∆Tt ·Adrive

evu,t

+∆Tt · ηevevu · P e
evu,t · (1−

∑

v

f ′
evu,v)

+ ∆Tt · ηevevu · (
∑

v

pcevu,v,t − pdevu,v,t) (118)
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C.12 Heat pump

∀u ∈ hpu, t :

pu,t = −P e
u,t − pcu,t + pdu,t (119)

pu,t ≤ 0 (120)

pu,t ≥ −Cp
u (121)

(122)

r+u,t ≤ pcu,t (123)

pcu,t ≤ F shp
u · (Cp

u − P e
u,t)− r−u,t (124)

r−u,t ≤ pdu,t (125)

pdu,t ≤ F shp
u · P e

u,t − r+u,t (126)

(127)

re,+u,t = r+u,t ·∆Tt (128)

re,−u,t = r−u,t ·∆Tt (129)

(130)

re,+u,t + (1− θ) · Ce
u ≤ eu,t ≤ Ce

u · (1 + θ)− re,−u,t (131)

∀u ∈ hpu : (132)

eu,1 = Ce
u (133)

∀u ∈ hpu, t ∈ T [2 : end] : (134)

eu,t = ηlossu,t · eu,t−1 −∆Tt · ηgainu,t · pu,t (135)
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C.13 Intermittent source

∀u ∈ ru

cu,1 ≥ SCp
u (136)

∀u ∈ ru, t :

pu,t = P e
u,t · cu,Yt

− peu,t (137)

r+u,t ≤ peu,t (138)

peu,t ≤ P e
u,t · cu,Yt

− r−u,t (139)

peu,t ≤ F curtail
u · cu,Yt − r−u,t (140)

∀u ∈ ru, t ∈ mtu (141)

pu,t = 0.0 (142)

∀u ∈ ru, y :

cuu,y ≤ Cp
u − cu,y (143)

∀u ∈ ru, y[2 : end]

cu,y = cu,y−1 + cuu,y−1 − cdu,y−1 (144)

− cu,y + FCramp
u · Cp

u + cu,y−1 ≥ 0 (145)

∀u ∈ ru, (yi, yj) ∈ Ly[1]

yj∑

y=yi

cdu,y ≥ cu,1 (146)

∀u ∈ ru, (yi, yj) ∈ Ly (147)

yj∑

y=yi

cdu,y ≥ cuu,yi (148)
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C.14 Generator

∀u ∈ gu :

cu,1 ≥ SCp
u (149)

∀u ∈ gu, t :

pu,t = (1− ηu
ηmin
u

) · Pmin
u · nu,t + ηu · peu,t (150)

Pmin
u · nu,t + r−u,t ≤ pu,t ≤ Pmax

u · nu,t − r+u,t (151)

∀u ∈ gu, t[2 : end] (152)

nu,t = nu,t−1 + nu
u,t−1 − nd

u,t−1 (153)

− pu,t + F ramp
u · cu,Yt

+ pu,t−1 ≥ 0 (154)

pu,t + F ramp
u · cu,Yt

− pu,t−1 ≥ 0 (155)

∀u ∈ gu, t ∈ mtu

pu,t = 0.0 (156)

∀u ∈ gu, (ti, tj) ∈ MUTt (157)

nd
u,ti ≤ nu,ti −

ti−1∑

t=tj

nu
u,t (158)

∀u ∈ gu, (ti, tj) ∈ MDTt (159)

nu
u,ti ≤

cu,Yti

Pmax
u

− nu,ti −
ti−1∑

t=tj

nd
u,t (160)

∀u ∈ gu, y[2 : end] (161)

cu,y = cu,y−1 + cuu,y−1 − cdu,y−1 (162)

− cu,y + FCramp
u · Cp

u + cu,y−1 ≥ 0 (163)

∀u ∈ gu, y :

cuu,y ≤ Cp
u − cu,y (164)

∀u ∈ gu, (yi, yj) ∈ Ly[1] (165)

yj∑

y=yi

cdu,y ≥ cu,1 (166)

∀u ∈ gu, (yi, yj) ∈ Ly (167)

yj∑

y=yi

cdu,y ≥ cuu,yi (168)
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