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Executive summary

ALEXANDER, Accelerating Low voltagE fleXibility pArticipation iN a griD safE manner, develops
methods and tools to unlock flexibility from low-voltage (LV) assets for system services in a grid-safe
and socially acceptable way. Within this framework, Task 4.1, Implications for balancing, analyses how
a large-scale deployment of emerging local flexibility mechanisms — as developed in WP2 and WP3 —
will affect system balancing and the interaction between regulated and unregulated market players.

Balancing with LV flexibility: focus of Task 4.1

Deliverable 4.1 reports on this analysis. It focuses on the role of energy communities, virtual power
plants and aggregators of active prosumers as flexibility service providers (FSPs), and on how their
business models, bidding strategies and internal decision-making processes translate into reliable
provision of system services. The deliverable explicitly accounts for consumers’ preferences and
possible bounded rationality, and studies how these behavioural aspects shape the amount, reliability
and economic value of LV flexibility.

Deliverable 4.1 starts from the observation that LV flexibility will increasingly be activated through local
mechanisms: local energy markets (LEMs) and local flexibility markets (LFMs), dynamic tariffs,
connection agreements and community-based coordination schemes. When such mechanisms are
deployed at scale, they will influence how much flexibility remains available for system balancing, how
predictable and controllable that flexibility is, and how risks and benefits are distributed across actors.

Against this background, Deliverable 4.1 pursues three main objectives:

e to assess how emerging business models (energy communities, aggregators) affect the
capability of FSPs to provide reliable balancing services when consumer preferences and
bounded rationality are taken into account;

e to analyse how interactions between FSPs at system level should be organised so that
operational stability is guaranteed while economic efficiency is maximised;

e to evaluate the operational and financial impact on system operators (TSO and DSOs) of a large
deployment of LV flexibility models, and to derive building blocks for an integrated Belgian
framework for procurement and activation of LV flexibility, in line with the recommendations
from Task 3.3.

Approach and scope of Deliverable 4.1
The deliverable brings together three complementary modelling and analysis strands:

e Community- and aggregator-level mechanisms.

Models of local energy markets and local flexibility markets translate heterogeneous user
preferences (financial, comfort, environmental) and technical constraints into net demand
baselines and flexibility offers that are meaningful for DSOs and TSOs.

e TSO-DSO market coordination and strategic interaction.

Game-theoretic tools are used to explore how different designs of coordinated flexibility
markets (e.g. common, multi-level, fragmented) perform when FSPs behave strategically and
when liquidity is limited, highlighting risks for efficiency and operational security.

e Price-based demand response for balancing under uncertainty.
Data-driven, inverse-optimisation methods are developed and tested to learn residential
price-response from historical data and to design aggregator participation strategies in
balancing services that are robust to behavioural uncertainty, focusing on value for balancing
rather than purely on forecast accuracy.
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These strands jointly cover the micro-level decisions of end-users and communities, the meso-level
strategies of aggregators and FSPs, and the macro-level organisation of system services and
coordination between system operators.

Key implications for balancing and for an integrated Belgian framework
From the combined analyses, several cross-cutting insights emerge that are relevant for Belgian
balancing arrangements and the future framework for LV flexibility:

e Business models and actors — Local flexibility mechanisms enable new roles for energy
communities and aggregators, but also redistribute responsibilities and risks. Reliable
provision of balancing/flexibility services from LV assets requires that these actors can
aggregate diverse resources, manage internal conflicts between comfort and economic
incentives, and honour external commitments towards DSOs and the TSO.

e Market design and coordination — The way in which TSO and DSOs coordinate procurement
and activation of flexibility has a direct impact on system-wide efficiency and on exposure to
strategic behaviour. Designs that ensure sufficient competition, avoid fragmentation of
liquidity and provide clear priority rules for local versus system needs are essential to
safeguard operational stability while making best use of LV flexibility.

e Consumer behaviour and uncertainty — The effective balancing potential of LV flexibility is
smaller and more uncertain than technical assessments suggest, because households care
about comfort and other non-financial motives and do not always respond perfectly rationally
to price signals. Modelling preferences and bounded rationality, and using value-oriented
learning approaches, improves the robustness of balancing strategies and reduces the risk of
over- or under-delivery.

e System operators and operational impact — A large deployment of LV flexibility mechanisms
will increase the need for grid visibility, forecasting tools and coordinated activation
procedures at DSO level, and will change the volume, timing and predictability of flexibility
seen by the TSO. While this can reduce the need for conventional reinforcement and central
reserves, it also requires clear cost-recovery mechanisms and incentives for DSOs to actively
procure and facilitate LV flexibility.

e Towards an integrated Belgian framework — Combining the above insights with the
recommendations from Task 3.3, the deliverable points to the key building blocks of an
integrated Belgian framework for LV flexibility: coherent products for system services that are
accessible to LV resources; transparent baselining and verification; harmonised TSO-DSO
coordination rules; and clear allocation of roles, responsibilities and incentives between
regulated (TSO/DSOs) and unregulated actors (communities, aggregators).

Overall, Deliverable 4.1 shows that the implications of LV flexibility for balancing cannot be understood
by looking at technology alone. The way local mechanisms are designed, how consumer behaviour is
represented, and how system-level markets are organised jointly determine whether LV flexibility
strengthens operational security and delivers economic benefits, or introduces new risks. The findings
provide input for the ALEXANDER roadmap and for ongoing regulatory discussions on the future design
of balancing and LV flexibility in Belgium.
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Abbrevations and acronyms

Abbreviation Full term

BRP Balance Responsible Party

cM Community Manager

CMF Comfort-driven (community type)
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DER Distributed Energy Resource

DSO Distribution System Operator
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DRR Demand Response Resource

EC Energy Community

ENV Environmental-driven (community type)
EV Electric Vehicle

FCR Frequency Containment Reserve

FIN Financial-driven (community type)
FOIO Forecast-Oriented Inverse Optimisation
FSP Flexibility Service Provider

HP Heat Pump

10 Inverse Optimisation

KER Key Exploitable Result

LEM Local Energy Market

LFM Local Flexibility Market

LV Low Voltage

MAE Mean Absolute Error

MIX Mixed-preference (community type)
MV Medium Voltage

RTP Real-Time Pricing

SBVOIO Scenario-Based Value-Oriented Inverse Optimisation
SMEs Small and Medium-sized Enterprises
SO System Operator

TSO Transmission System Operator
VOIO Value-Oriented Inverse Optimisation
VPP Virtual Power Plant

WP Work Package

BAL Balanced (community type)
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1. Introduction

1.1. Context

Europe’s electricity systems are entering a phase in which flexibility becomes as critical as capacity.
Rising shares of variable renewable generation, the electrification of heating and mobility, and
increasing congestion at distribution level all push system operators to make more active use of
demand-side flexibility. A significant part of this flexibility potential is connected at the low-voltage
(LV) grid, through assets such as rooftop PV, residential batteries, electric vehicles (EVs) and heat
pumps (HPs), often coordinated via energy communities, virtual power plants (VPPs) or aggregators of
active prosumers.

In parallel, new local flexibility mechanisms are emerging at LV level. Building on the work of
ALEXANDER WPs 2 and 3, these mechanisms include local energy and flexibility markets, dynamic
tariffs, non-firm connection agreements and operating envelopes, as well as new community-based
coordination schemes. While these instruments are primarily designed to address local network issues
and to enable consumer participation, their large-scale deployment will inevitably affect how much LV
flexibility is available for system balancing and congestion management, how reliably it can be
activated, and how risks and benefits are shared between actors.

Belgium offers a particularly relevant context for this analysis. The coexistence of three regional
regulatory frameworks, evolving arrangements for TSO—-DSO coordination, and a fast-growing stock of
distributed resources mean that LV flexibility will play an increasing role in adequacy and balancing. At
the same time, balancing products, prequalification procedures and market rules have historically
been shaped around large, centralised resources. Understanding how emerging LV-oriented
mechanisms interact with system-level services is therefore essential for designing an integrated
Belgian framework for procurement and activation of LV flexibility.

Task 4.1 “Implications for balancing” is positioned at this interface between local mechanisms and
system needs. It investigates how large-scale deployment of LV flexibility models, as defined in WP2
and WP3, impacts balancing arrangements, the functioning of system services, and the roles of both
regulated and unregulated players.

1.2. Challenges

The integration of LV flexibility into system balancing and congestion management raises several
interconnected challenges that go beyond purely technical considerations.

First, new business models and actors change how flexibility is organised and offered. Energy
communities, VPPs and aggregators bundle small-scale assets and mediate between end-users, DSOs
and the TSO. Their internal decision-making, including how they design baselines, share costs and
benefits, and manage comfort versus savings, directly affects the volume and reliability of flexibility
they can commit to system services. The ability of flexibility service providers (FSPs) to deliver
balancing products therefore depends not only on technology, but also on incentives, governance
structures and contractual arrangements at community and aggregator level.

Second, the behaviour of end-consumers introduces uncertainties. Households value comfort,
autonomy and environmental impact alongside financial gains, and they may not respond in a fully
rational or perfectly predictable way to price signals or activation requests. If these aspects are
ignored, activation strategies may lead to systematic over or under-delivery in balancing/flexibility
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services. Considering preferences and bounded rationality in quantitative models is thus key to
assessing the real contribution of LV flexibility to system stability.

Third, interactions between FSPs at system level can create coordination and efficiency issues. As
more actors bid LV-sourced flexibility into balancing and other system services, competition and
strategic behaviour become important. Market design and TSO-DSO coordination rules influence
whether flexibility is used where it has highest system value, or whether fragmentation, double
activation and local market power lead to inefficiencies and operational risks.

Finally, there are operational and financial implications for system operators. DSOs must ensure grid-
safe activation of LV flexibility while dealing with limited observability, data constraints and regulatory
obligations. The TSO must secure sufficient, reliable balancing capacity and energy in a context where
part of the flexibility is activated locally for congestion management. Both levels need clear procedures
and cost-recovery mechanisms if LV flexibility is to become a structural component of balancing rather
than an ad-hoc resource.

Task 4.1 addresses these challenges by explicitly modelling the interactions between consumers,
communities, aggregators, DSOs and the TSO, and by analysing how different local flexibility
mechanisms and market designs perform when behavioural aspects and strategic incentives are taken
into account.

1.3. Scope

Deliverable 4.1 reports on the work carried out in Task 4.1 between M24 and M42. In line with the task
description, its scope is threefold:

e Impact of emerging LV business models on system-service provision.
The deliverable examines how energy communities, VPPs and aggregators of active
prosumers, operating under the mechanisms developed in WP2 and WP3, affect the ability of
FSPs to reliably provide balancing and related system services. Particular attention is paid to
how consumer preferences, comfort considerations and bounded rationality influence the
flexibility that can be contracted and delivered.

e Organisation of  competition between FSPs  for  operational services.
Building on game-theoretic and optimisation-based models, the deliverable analyses how
interactions between multiple FSPs at system level should be organised to guarantee
operational stability while maximising economic efficiency. Different TSO-DSO coordination
schemes and market designs are compared in terms of their effectiveness in integrating LV
flexibility and their vulnerability to strategic behaviour.

e Impacts on system operators and contribution to an integrated Belgian framework.
The deliverable assesses how a large-scale deployment of LV flexibility mechanisms affects
DSOs and the TSO, both operationally and financially. Based on these insights, and in
conjunction with the recommendations from Task 3.3, it identifies key building blocks for an
integrated Belgian framework for procurement and activation of LV flexibility, ensuring
coherent treatment of LV resources across congestion management, balancing and other
system services.

These questions are addressed through three main modelling and analysis strands, each associated
with a Key Exploitable Result (KER) of ALEXANDER Task 4.1:
e community-level mechanisms for providing baseline-based flexibility services to DSOs;
e simulation environments for coordinated TSO-DSO flexibility markets and strategic FSP
behaviour;

10
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e data-driven frameworks for price-based residential demand response participation in
balancing services under behavioural uncertainty.

Rather than presenting these KERs inisolation, Deliverable 4.1 emphasises their combined implications
for balancing and their relevance for Belgian stakeholders.

1.4. Organisation

The remainder of this deliverable is structured around three KERs and a concluding section. The first
KER section focuses on how communities and aggregators organise LV flexibility and offer it to DSOs,
the second on TSO-DSO coordination and competition between flexibility service providers in
coordinated markets, and the third on data-driven frameworks for price-based residential demand
response participation in balancing. The final section synthesises the implications of these three KERs
for system balancing in Belgium and outlines key design principles for an integrated framework for LV
flexibility.

11
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2. KER 1: Energy Communities providing flexibility services

for Distribution System Operators

2.1. An Innovative Framework for Heterogeneous Energy Communities

Providing Baseline Flexibility Services in Distribution Networks [1]

Motivation

The increasing proliferation of distributed energy resources (DERs) such as solar PV, battery storage,
and electric heat pumps is reshaping the operational dynamics of modern power distribution
networks. While DERs offer promising solutions for decentralization and decarbonization, they also
pose significant technical challenges, most notably line congestion and voltage regulation issues at the
distribution level. Addressing these challenges traditionally involves grid reinforcement, but such
measures are capital-intensive, slow, and inflexible to localized variations. A more adaptive alternative
lies in the use of flexibility services, which allow DSOs to manage demand and supply variations using
controllable resources across the network.

Energy Communities (ECs) (groups of prosumers and consumers sharing local energy resources) have
emerged as promising contributors of such flexibility services. Through coordinated energy trading and
DER sharing, ECs can provide demand response capabilities, promote self-consumption, and ease
pressure on the grid. However, realizing this potential in practice requires addressing key challenges
related to user behavior, market design, and system-level integration.

Objectives and Contributions

This study introduces an innovative framework for enabling heterogeneous ECs to effectively
participate in flexibility markets, offering a mechanism through which DSOs can procure flexible
services while respecting the internal dynamics of ECs. Unlike capacity limitation models where power
consumption caps are imposed, baseline mechanisms define a reference consumption level from
which flexibility is measured. While more adaptable, baseline mechanisms are vulnerable to strategic
behavior and uncertainty, especially when users have diverging motivations.

The paper addresses several critical gaps in current research and implementation:

1. User Preference Integration: Many existing frameworks lack mechanisms that account for
diverse user preferences—financial, environmental, and comfort-related—leading to limited
understanding of user behavior.

2. Baseline Manipulation Risk: Without careful design, users may game the system by inflating
their historical consumption, increasing baseline values and securing undue compensation.

3. Inadequate Valuation of Flexibility: Flexibility services are often compensated using uniform
or cost-based approaches, overlooking users’ true marginal contributions to network support.

4. Neglect of Network Constraints: Local voltage and congestion constraints, particularly in LV
networks, are frequently omitted, risking grid reliability when implementing distributed
flexibility.

Overview of Methodology

To address these challenges, we propose a three-stage methodological framework, combining game
theory, bilevel optimization, and power system modeling to deliver a realistic and operationally sound
approach.

12
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The structure of EC is depicted in Figure 1. In this framework, Community Manager (CM) is responsible.
For coordinating EC including energy exchanges between the members and financial transaction.
Retailer supports the EC for energy balancing by purchasing surplus electricity selling deficit power to
the CM. The DSO is also responsible for grid safety and coordinates with CM for flexibility service
provision.

» Financial fiow

> Cormuicatonton | L EM

Power flaw line

LEM REC i
LD Fied foad demand

PV: Pholovoltaic system q---.
{HP: Hest pump i s
ES: Battery snergy storage: taistier- P

RECE REZ o el o

HYMY ; '\W \ . \‘b
MV-bus 1 Mv-bus 2y MV-busi |
O v ot s P

iy H oLy

Figure 1: The structure of energy community and interactions with other entities

Stage 1: Local Energy Market (LEM) with Preference-Aware Design
In the first stage, energy transactions within the EC are governed by a Stackelberg game (SG) between
the CM and community users. The CM sets internal electricity prices considering retail tariffs,
distribution grid fees, and network constraints. In response, users schedule their resource activities
based on a personalized utility function that incorporates three weighted preferences:

e Financial savings;

e Environmental impact (based on CO, intensity of energy);

e Thermal comfort (modeled via indoor temperature deviation).
This interaction is modeled as a bilevel programming problem, where the CM solves an upper-level
optimization to minimize the total cost of imports, exports, and grid usage, while users solve individual
lower-level problems to maximize utility. The bilevel model includes:

o Power flow constraints in the radial LV network using LinDistFlow equations;

e Operational limits on battery storage, heat pumps, and energy exchanges;

e Voltage and power constraints at all nodes.
The bilevel formulation is reformulated into a single-level mixed-integer quadratic program using the
Karush-Kuhn-Tucker conditions, allowing for tractable computation.
The outcome of this stage includes net demand baseline values and estimated flexibility prices for each
EC, which are communicated to the DSO for subsequent planning.

Stage 2: Local Flexibility Market (LFM) with Congestion Management
In the second stage, the DSO uses the submitted baseline power and price data to optimize congestion
management across the medium-voltage (MV) distribution network. The object of the problem is to:
e Allocate upward and downward flexibility requests;
e Ensure power balance and voltage limits across all MV buses;
e Minimize overall flexibility procurement costs, including power losses.
Once flexibility needs are identified, the CM coordinates with users to adjust schedules within their
available DER capacities, ensuring that the community collectively meets its obligations without
violating baseline commitments or local constraints. A penalty mechanism is introduced to discourage
deviation from baseline values and mitigate strategic behavior.

13
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Stage 3: Flexibility Valuation and Fair Revenue Allocation
After flexibility services are delivered, financial compensation is allocated using Distribution Locational
Marginal Prices. Internally, each CM employs the Shapley value method to distribute rewards among
users based on their actual contribution to flexibility provision. This game-theoretic approach ensures:
e Fairness across heterogeneous participants;
e Recognition of users with higher flexibility impact;

Main Findings

This study explores how different types of energy communities—each with distinct user preferences—
participate in local energy and flexibility markets. Five community archetypes were modeled: comfort-
driven (CMF), financial-driven (FIN), environmental-driven (ENV), balanced (BAL), and mixed-
preference (MIX). The initial results demonstrate clear differences in operational behavior, flexibility
provision, and economic outcomes across these communities.

In the LEM stage, user preferences strongly influence internal buying and selling prices. Comfort and
environmental communities exhibit higher internal buying prices due to their strong non-financial
motives, whereas financial community shows lower prices, prioritizing cost efficiency. This directly
impacts energy scheduling and resource usage, with CMF community purchasing heavily during low-
cost hours to preserve comfort, while FIN and MIX communities strategically time imports and exports
for economic gain.

The transition to the LFM highlights how communities adapt their flexible resource schedules
(batteries and heat pumps) in response to system-level requests.

According to Tables 1 and 2, cost and revenue analysis shows that FIN achieves the lowest LEM
operational costs and the highest LFM revenues, validating the effectiveness of financial-driven
strategies. BAL and MIX communities perform moderately across all dimensions, while CMF and ENV
face higher costs and lower revenues. The Shapley value is used for fair revenue allocation, rewarding
communities proportionally to their flexibility contributions.

Table 1: Operation costs of different EC members participating in LEM

Users Operation Costs in LEM
Users

CMF FIN ENV BAL MIX
User1 111.10 152.18 162.08 111.32 179.94
User 2 114.44 104.01 114.07 122.22 138.67
User 3 190.98 108.71 128.87 133.55 103.10
User 4 157.87 102.28 146.52 162.75 109.84
User5 231.04 141.03 135.73 207.35 106.33

Table 2: Revenues of participating in LFM for different EC members
Revenue Allocation Using Shapely Value Method

ECType Total

Revenues User 1 User 2 User 3 User 4 User 5
CMF 40.95 9.04 8.75 8.99 7.58 6.57
FIN 99.37 28.71 29.60 28.66 26.24 26.22
ENV 47.74 6.93 7.55 7.99 12.75 12.59
BAL 63.58 9.53 13.29 10.19 12.69 17.86
MIX 68.72 10.77 13.73 17.72 7.23 19.25
Next Steps

14
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For the next steps more analysis on physical network constraints including active power flow should

be conducted to see impact of various ECs on grid conditions. In addition, the research paper regarding
this research should be completed.

15



Alexander7

3. KER 2: Strategic Behaviour in TSO-DSO coordinated

Flexibility Markets

3.1. Strategic behavior in TSO-DSO coordinated flexibility markets: A

Nash equilibrium and efficiency analysis [2]

Motivation

Strategic behavior refers to the actions taken by market participants, such as Flexibility Service
Providers (FSPs), to maximize profits by leveraging market rules, conditions, or competitors' actions.
Accounting for strategic behavior in flexibility market analyses is critical because the assumption that
FSPs bid solely at marginal costs oversimplifies market dynamics and fails to reflect the complexities
of real-world competition.

Strategic bidding can significantly impact market efficiency, exposing vulnerabilities in market design.
Depending on the structure of flexibility markets, FSPs with dominant market shares or access to
isolated resources may exploit their positions by bidding aggressively or manipulating prices. For
example, fragmented market designs—where markets are separated by service (e.g., congestion
management and balancing) or by system operator (e.g., DSOs and TSOs)—can lead to increased costs
due to reduced competition and monopolistic behavior by FSPs. Additionally, gaming strategies, such
as the "inc-dec" game or exploiting congestion to create local monopolies, can undermine the primary
objectives of flexibility markets. By leveraging grid constraints, FSPs can isolate parts of the network,
gaining disproportionate pricing power, which directly increases system operators’ costs and reduces
market fairness.

Even in competitive markets, strategic behavior can create opportunities for market power. In
scenarios with low liquidity or insufficient coordination between flexibility buyers, dominant FSPs can
influence prices and maximize profits, resulting in suboptimal resource allocation and reduced overall
efficiency. These challenges highlight the importance of carefully designed market rules to prevent
exploitation and encourage fair competition.

Strategic behavior is not only possible but inevitable in markets involving profit-driven participants.
Ignoring this aspect would oversimplify analyses and lead to unrealistic conclusions. Simulating FSP
decision-making under realistic conditions—taking into account full or partial information and varying
levels of participants’ computational capability—ensures a more accurate understanding of market
outcomes and provides insights into mitigating potential inefficiencies of certain designs.

Objectives and Contribution

In this work, the strategic behavior of FSPs is analyzed within a duopolistic setting involving the
procurement of flexibility by a TSO and a DSO. The study explores three market designs—common,
fragmented, and multi-level markets—to investigate how varying levels of resource sharing and
coordination affect market outcomes and the potential for gaming by FSPs. In the common market
design, all FSPs are pooled together, and the market is jointly cleared by the TSO and DSO, ensuring
centralized coordination and access to all available resources. In the fragmented market model, system
operators clear their markets independently, with resources being exclusively available to the SO
managing the network to which they are connected. Finally, the multi-level market introduces a
sequential design, granting DSOs priority access to local resources in the first stage, while any
remaining resources are made available to the TSO in the second stage. These designs capture varying

16
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degrees of TSO-DSO coordination, providing a framework for assessing the impact of strategic behavior
on market efficiency and competition.

Overview of Methodology

A detailed mathematical analysis of strategic bidding in those markets, considering a duopolistic
setting, is performed by using tools from game theory. Specifically, the existence of equilibria of this
interaction between FSPs and the market and how strategic behaviors impact market efficiencies
under the different practical market settings are analyzed. Subsequently, a structured comparison
between different TSO-DSO coordination schemes can be derived. A numerical simulation study is also
conducted to illustrate and validate the theoretical results. The analytical methodology of this study is
summarized in Figure 2-.

TSO-DSO coordinated Market situations for
flex markets: designs [ [~ flexand network [ Derivation | Comparison 1 [~ Comparison of results
i FSP: iti of NE .
and formulations stratesgic capacities Batwesh simula-
behavior Sufficient flex 1 market tion of Market situations

designs and large

models Derivation findings
Multi-level Restrictive line of POA | —~ NE efficiency (PoA)

Figure 2:- Methodology of the study

Main findings

Notable differences in market performance across the three designs can be observed from the
analysis. The common market emerges as the most efficient, leveraging optimal resource pooling and
centralized clearing to minimize inefficiencies and enhance competition. By allowing all resources to
compete in a single clearing process, it reduces the opportunities for FSPs to exploit market power. In
contrast, the fragmented market demonstrates how the absence of coordination between TSOs and
DSOs can amplify inefficiencies. The separation of markets limits competition, enabling FSPs to
manipulate prices by exploiting reduced liquidity and localized monopolies.

The multi-level market provides an intermediate level of efficiency. While its sequential structure
improves upon the fragmented market by introducing partial resource sharing, it still leaves room for
strategic behavior due to the prioritization of DSOs in the first stage. This design allows for some
coordination but introduces complexities that can reduce overall market efficiency if not carefully
managed. For example, FSPs in local markets may still leverage congestion or limited competition to
influence prices, though the second-level access for TSOs mitigates these effects to some extent.

These findings underscore the critical importance of market design in mitigating strategic behavior.
This study demonstrates that greater coordination between TSOs and DSOs, as exemplified by the
common market, can significantly enhance market efficiency and reduce the risk of gaming. However,
the challenges of achieving such coordination in practice highlight the need for innovative solutions to
balance decentralized decision-making with the benefits of resource sharing.

3.2. Analyzing the Impact of Flexibility Service Providers Bidding

Behavior: a k-level Reasoning Approach

Motivation
Historically, flexibility markets have operated exclusively at the TSO level. Examples include balancing
markets for manual frequency restoration reserve (mFRR), automatic frequency restoration reserve

17
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(aFRR), and frequency containment reserve (FCR). The emergence of local (DSO-level) flexibility
markets as a flexibility mechanism to resolve grid issues in distribution systems, such as congestion,
has significantly transformed the flexibility market landscape. The coexistence of TSO- and DSO-level
flexibility markets introduces various market coordination schemes between TSOs and DSOs. This
study focuses on three general coordinated market schemes: fragmented, sequential/multilevel, and
common market schemes.

A critical yet underexplored factor influencing the efficiency of the previously mentioned emerging
market models is the strategic behavior of participants and its potential effects on market design and
performance. In TSO-DSO coordinated markets, flexibility service providers (FSPs) offering flexibility
through bids are likely to adopt bidding strategies aimed at maximizing their expected revenues, an
approach referred to here as strategic bidding.

Objectives and Contribution

This work analyzes the strategic behavior of FSPs in TSO—-DSO coordinated market models while fully
accounting for network constraints. Using a Stackelberg game framework, it evaluates three distinct
designs, namely a common market, a fragmented market, and a multi-level market, highlighting
differences in resource sharing, market sequencing, and priority access, and assessing their
performance under strategic bidding. To better reflect real-world decision-making, the study
incorporates a bounded rationality approach through a k-level reasoning model, capturing varying
complexities in FSP behavior. The methodology is applied to a realistic interconnected TSO-DSO
system facing congestion and imbalance, with extensive simulations providing insights into how
market design and strategic behavior interact to influence efficiency.

Overview of Methodology

To analyze how FSPs bid strategically and how such behavior affects the flexibility market, we adopt a
Stackelberg game-theoretic modeling approach. In this framework, FSPs are modeled as leaders
playing a non-cooperative game, each aiming to maximize their individual market profits. The market
operator acts as a follower, responding to the collective decisions (i.e., bids) of the FSPs by executing
the market-clearing process. This hierarchical interaction between strategic FSPs and the market
operator leads to the formulation of a Stackelberg game, which can be translated into an Equilibrium
Problem with Equilibrium Constraints (EPEC), capturing the interdependence of FSPs' strategic
behavior and the market-clearing outcome. Moreover, we incorporate the notion of bounded
rationality in our modeling. Rather than assuming FSPs always compute an exact equilibrium of the
EPEC, we allow for approximate reasoning through k-level reasoning. Under this assumption, FSPs do
not necessarily find an equilibrium but instead engage in iterative best-response dynamics, where each
FSP chooses its strategy based on beliefs about the strategies of others. This approach provides a more
realistic representation of decision-making behavior under limited information.

Building on the strategic bidding model described previously, we conducted an extensive set of
numerical simulations to evaluate the influence of such behavior across the three flexibility market
schemes: fragmented, sequential, and common markets. In addition to the baseline scenarios, two
special cases were investigated:
- Alow liquidity market scenario, where the number of active market participants is limited.
- An aggregation scenario, in which an FSP controls a pool of resources and can bid them
collectively

Main Findings

Our numerical simulation study yielded several key insights:
- Impact of market fragmentation and liquidity:
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Market fragmentation and low liquidity can amplify the potential for market power, as fewer
available resources increase the influence of individual FSPs on market outcomes. Among the
examined schemes, the common market scheme demonstrated superior performance in
mitigating market power, owing to its more integrated and liquid structure. In contrast,
fragmented and sequential schemes were more vulnerable to inefficiencies under low-
participation conditions.

- Congestion-induced market power:
Congestion at the TSO-DSO interconnection points can lead to localized market power or even
monopolistic conditions, regardless of the coordination scheme employed. This finding
highlights the critical role of network constraints in shaping strategic opportunities and
underscores the need for market designs that explicitly address congestion management at
interconnection points.

- Effects of resource aggregation:
When an FSP aggregates multiple resources, it may exercise price manipulation strategies more
effectively. However, the common market scheme proved to be more robust against such
manipulation due to its higher liquidity and larger competition pool. This suggests that
centralized, co-optimized market designs may offer more resilience to strategic exploitation by
large aggregators.
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4. KER 3: Price-Based Demand Response Participation in

Balancing Services

As Belgium transitions to a carbon-neutral energy system, integrating flexible electricity consumption
is becoming essential. The growing share of variable renewable energy sources, such as wind and solar,
requires new approaches to balance supply and demand while maintaining grid reliability and
controlling costs. Demand Response (DR) programs, which allow consumers to voluntarily adjust their
energy usage in response to dynamic conditions or price signals, offer a promising solution. By
leveraging distributed demand-side resources, these programs can help balance supply and demand,
reduce dependence on fossil fuels, and contribute to a more resilient power system.

In Belgium, small-scale residential assets are expected to play a key role in this transformation. Elia’s
adequacy study projects that by 2034, the country could see approximately 143,000 home batteries,
930,000 smart-charging electric vehicles, and 300,000 controllable heat pumps participating in grid
flexibility. In high-flexibility scenarios, these numbers could exceed 2 million electric vehicles and 1.2
million heat pumps. If well-coordinated, such resources could reduce Belgium’s projected capacity gap
by up to 1.1 GW—more than double the potential contribution of industrial flexibility alone.
Economically, this shift could generate annual system-wide savings of €205 million to €438 million,
primarily by reducing the need for reserves and capacity remuneration.

Residential flexible energy assets are typically connected to the low-voltage electricity grid.
Individually, these assets are small in scale and often lack the monitoring systems to meet strict
technical standards for telemetry, verification, or bidding thresholds required for participating in
electricity markets. As a result, a single household cannot typically participate directly in these markets.
To overcome this, aggregators play a key role. They group together many residential energy users to
form a larger, more predictable resource that can interact with the grid in a meaningful way.
Aggregators manage the important tasks of forecasting energy use, tracking consumption (metering),
and coordinating responses across the group. This allows aggregated households to provide energy
flexibility services just like larger commercial or industrial users.

To manage and influence when and how households use electricity, aggregators generally use one of
two coordination strategies: direct control or indirect control. Direct control involves sending specific
on/off signals to devices within homes, such as turning off water heaters or reducing battery charging
at certain times. While this approach can be effective and precise, it raises concerns about scalability
and consumer privacy, since it requires a high level of access and communication with individual
devices. Indirect control, on the other hand, influences consumer behavior without direct interference.
A common and effective method here is dynamic pricing, where electricity prices vary over time to
reflect real-time supply and demand conditions. One of the most notable forms of dynamic pricing is
Real-Time Pricing (RTP). Under RTP, electricity prices are updated frequently (e.g. hourly, quarter-
hourly, etc.,) based on conditions in the power system. This encourages consumers to adjust their
energy use in response to price signals, for example by running appliances when electricity is cheaper.
RTP is especially beneficial in systems with a high share of renewable energy, where supply can be
variable and less predictable.

However, RTP’s effectiveness depends on the ability to accurately predict consumer responses to price
signals (hereafter referred to as price-response behavior). Unlike direct control schemes, RTP does not
require formal commitments, resulting in voluntary and highly variable participation. This variability is
further complicated by consumers’ bounded rationality, as consumers may find it difficult to make
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consistent, cost-effective decisions in response to fluctuating prices. Limited insights into individual or
collective preferences and constraints also hinder the ability to model or forecast behavior accurately.

This unpredictability poses financial risks for aggregators. Misestimating consumer behavior can lead
to over-activation or under-activation of demand-side flexibility, which could result in missed
opportunities or even penalties. To address these challenges, in the first task—detailed in Section 4.1—
we investigate state-of-the-art data-driven optimization techniques for estimating how residential
consumer groups respond to price signals. Building on this, we introduce a novel model selection
framework for consumer response to price signals that integrates the financial consequences of
uncertainty into both estimation and decision-making processes. Finally, we evaluate the performance
of our proposed method in the context of a balance responsible party (BRP) relying on small-scale
consumers as its demand response resources (DRRs), providing implicit reserve to the Belgian single-
price imbalance settlement mechanism.

In the second contribution, presented in Section 4.2, we build on previous work by introducing a novel
heuristic approach for developing a data-driven, multi-scenario price-response model for DRRs. This
model allows the aggregator to consider multiple possible consumer behavior patterns in reaction to
price signals during real-time decision-making. The goal is to support a more conservative, uncertainty-
aware participation of a BRP managing small-scale consumers under Belgium’s single-price imbalance
mechanism, thereby facilitating the integration of flexible residential demand into the country’s
evolving energy system.

4.1. Price-Based Demand Response Participation in Balancing Services:

A Value-Oriented Inverse Optimization Framework [3]

Motivation

To develop the price-responsive behavior of DRRs and support price-based DR programs, Inverse
Optimization (10) has emerged as a promising approach for learning such behavior from historical data.
10 offers interpretable, decision-compatible models that integrate smoothly into the operational
frameworks of aggregators. Unlike black-box machine learning models, 10 retains the structural
rationale behind consumer behavior, which is essential for optimization-based applications. However,
traditional data-driven 10 methods typically focus on minimizing forecast errors. This approach can be
misleading in practical settings, particularly when inferred consumer flexibility is embedded within an
aggregator’s decision-making process in electricity markets. This is because not all forecast errors
result in equal financial consequences. Recent studies highlight that forecast effectiveness should be
evaluated based on ex-post decision value, i.e., the actual profit realized after observing system
outcomes. Some forecast errors may have minimal operational impact, while others can lead to
significant financial losses, depending on the magnitude of the error, the state of the system, and
market conditions. Consequently, there is a growing need for value-oriented learning, where model
selection emphasizes minimizing decision-making regret. In this context, regret refers to the difference
between the profit actually achieved and the best possible profit that could have been achieved with
perfect information. Prioritizing regret minimization over forecast accuracy is essential for making
decisions that are more aware of uncertainty and lead to better economic outcomes in real-world
conditions.

Objective and Contribution

The main objectives of this research are, first, to implement the aggregate DRRs flexibility model,
obtained using 10, into the decision-making problem of a BRP (the aggregating entity in this study),
and second, to develop a model selection framework for 10 that takes into account the financial
impacts of the 10 model’s forecast errors when implemented in the BRP’s decision-making process.
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The key innovation lies in shifting the 10 model selection process from a forecast-accuracy objective to
a decision-making regret-minimization objective, without fully embedding the decision problem into
the training phase (which would be computationally prohibitive). Instead, the proposed Value-
Oriented 10 (VOIO) framework evaluates 10 hyperparameters based on their downstream impact on
BRP profitability.

To test the effectiveness of the proposed framework, a case study using Belgian market data is
conducted. The BRP is assumed to control a portfolio of DRRs and must decide on daily price signals to
elicit the desired flexibility. Historical DA prices and DRR consumption data are used to build and
validate the models. Performance is assessed in terms of both forecast error and ex-post financial
outcomes.

Overview of the methodology

The paper models the BRP’s strategic participation in the single-price imbalance market using a bilevel
optimization framework (Figure 3) that captures the hierarchical interactions between the BRP, the
balancing market, and DRRs. At the upper level, the BRP seeks to maximize its profit by deciding real-
time price signals to influence DRR consumption, thereby shaping its imbalance position. This profit
depends on both the incentives paid to DRRs and the imbalance prices received from the market. The
first lower-level problem models the aggregate price-response behavior of DRRs, using parameters
estimated through the proposed I0 model selection (Figure 4). The second lower-level problem
simulates the system operator’s market-clearing process, determining imbalance prices based on
aggregate imbalances and reserve activation costs. This bilevel setup enables the BRP to exploit DRR
flexibility while accounting for its impact on market prices, creating a closed-loop decision model that
reflects real-world operational and market complexities.

Real-time Price Signals Upper Level: Balance Upward/Downward
Responsible Party (BRP) Balancing
Consumers’ Market Price
Response
Lower Level 1: Demand Lower Level 2: Electricity
Response Resources (DRRs) Market

&

Figure 3:- Bilevel programming model for BRP’s decision-making in the
single-price imbalance settlement market

On the other hand, Figure 4 presents a high-level flowchart of the proposed value-oriented, data-
driven 10 framework. The process starts with historical price-consumption data (a) and historical
balancing market data (b), which serve as inputs to the 10 stage (c). In this stage, various
hyperparameter combinations—such as the granularity of DRRs’ consumption levels and the number
of training days—are explored to build a consumption model that estimates DRRs’' aggregate
willingness to pay for each consumption level. Each hyperparameter set results in a corresponding DRR
model, which is then integrated into the BRP’s decision-making process during the validation period.
This integration facilitates both the estimation of expected profits and the generation of price signals
to be communicated to DRRs. To account for uncertainty in DRR responses to real-time prices, an ex-
post profit analysis (e) is conducted using real-time price data generated from each hyperparameter
combination. This analysis evaluates actual profits under uncertain conditions. Based on the results,
the most effective hyperparameter set is selected for future optimization.
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Figure 4-: Overview of the workflow for the proposed Value-Oriented Data-
Driven Inverse Optimization Model Selection process (VOIO framework)

Main findings
The empirical evaluation of the VOIO framework yields several key findings:

Improved Financial Performance: Compared to a forecast-optimized baseline (FOIO), the
proposed value-oriented method (VOIO) improved BRP ex-post profits by 2.69% on the
validation set and 1.94% on the test set, despite having slightly lower consumption forecast
accuracy.
Forecast Accuracy vs. Value Misalignment: The statistical correlation between forecast error
and ex-post profit was negligible (Pearson r = 0.1, Spearman p = -0.02), highlighting that better
forecasts do not guarantee better decisions—underscoring the need for value-based model
evaluation.
Reduced Over-activation Losses: VOIO yielded more conservative real-time price signals,
reducing BRP over-activation of balancing services:

o 7.68% reduction in extreme over-activation cases that could disrupt the anticipated

system imbalance

Next steps
Building on the VOIO framework, the following direction is proposed for future work:

Multi-Scenario Flexibility Curve Learning: Enhance the BRP’s decision-making process by
extracting multiple flexibility curves for demand response resources (DRRs) from historical
data. This approach aims to represent a range of possible DRR behaviors rather than relying
on asingle curve derived from the entire dataset. By incorporating multiple scenarios, the BRP
can better account for uncertainty in DRRs’ price-responsive behavior at the time of decision-
making, leading to more robust and informed market participation.

4.2. Price-Based Demand Response Participation in Balancing Services: A

Multi-Scenario Inverse Optimization Framework

Motivation

The VOIO approach proposed in Section 4.1 improves the BRP’s profits by enabling a more conservative
price-response modeling strategy compared to the FOIO benchmark. However, the resulting single
price-response model for DRRs remains vulnerable to financial losses due to over- or underestimation
of their reactions to real-time prices. This limitation can be addressed by transitioning from a single-
scenario model to a multi-scenario approach for modeling DRRs' price responses. While prior research
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on scenario-based decision-making for DR aggregators has demonstrated both economic benefits and
robustness, these methods often depend on a set of predefined scenarios or rely heavily on
computationally demanding Monte Carlo techniques. These drawbacks limit their practical
deployment in real-time market contexts.

A promising direction is to leverage data-driven methods that can efficiently produce multiple price-
response models reflecting a range of plausible DRR behaviors. By accounting for variability—such as
by fitting models to different quantiles of historical data—BRPs could make more informed real-time
pricing decisions. Such scenarios would enable the BRP to calculate its profit for a given real-time price
across a spectrum of DRR responses, from optimistic to pessimistic, and ultimately select a real-time
price that remains profitable under all plausible outcomes.

Objective and Contribution
The objective is to develop a Scenario-Based Value-Oriented Inverse-Optimization (SBVOIO)
framework that:

e Automatically extracts multiple price-response scenarios of DRRs (e.g., lower- and upper-
quantile curves) from historical price-consumption data,

e Embeds these scenarios into a scenario-aware bilevel model for the BRP’s participation in the
balancing market, and

e Selects |0 hyperparameters by maximizing the expected ex-post profit across scenarios (i.e.,
minimizing multi-scenario regret).

The main contributions of this work are as follows:

e Heuristic quantile-based algorithm: A novel approach that adjusts the shape of the flexibility
curve by systematically forcing each flexibility scenario to either over- or under-estimate
historical consumption at a specified quantile level, in a computationally efficient manner.

e Scenario-based bilevel BRP model: A comprehensive formulation in which the upper level
maximizes expected profit by considering the DRRs’ flexibility scenarios extracted in the
previous step. The first lower level captures the DRRs’ price-response scenarios, while the
second lower level clears the balancing market for each scenario.

e Scenario-Based Value-Oriented 10 (SBVOIO) model-selection framework: An extension to
value-oriented model selection in the previous contribution (Section 4.1) that combines the
heuristic algorithm and bilevel model into a hyperparameter grid search. It selects the 10
hyperparameters set that yields the highest ex-post profit across scenarios, reducing
vulnerability to uncertainty.

e Case study on the Belgian balancing market: Demonstrates that the SBVOIO approach
reduces the mean absolute error (MAE) of profit compared to the VOIO method, while also
reducing losses related to over-activation of services.

Overview of the methodology
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Figure 5: Overview of the workflow for the proposed Scenario-Based Value-
Oriented Inverse Optimization (SBVOIO) Model Selection process

Figure 5 outlines the overall framework for selecting an inverse optimization model. The process begins
with collecting historical data on price-consumption patterns (a) and balancing market data (b). A grid
search is then conducted across different hyperparameter settings to configure the DRRs’ price-
response model (stages c—f). In stage (c), each hyperparameter combination is used to solve an |0
problem that estimates a base single-scenario model capturing how DRRs respond to prices. In step
(d), this base model and its corresponding hyperparameters are used to construct multiple DRR price-
response scenarios that reflect the uncertainty observed in historical data. These scenarios are
incorporated into the BRP’s operational strategy and evaluated on a validation dataset to forecast
expected profits and generate price signals aimed at influencing DRR behavior. Stage (e) evaluates
each hyperparameter combination by performing an ex-post analysis, where DRR responses are
perturbed to mimic their uncertain response to real-time prices and the impact on realized profits.
Finally, in stage (g), the hyperparameters that deliver the highest realized profit under uncertain DRR
behavior are selected for future deployment.

Main findings
In a case study using real-world data from the Belgian balancing market, we demonstrated
e Compared to the VOIO as the baseline, the proposed SBVOIO method improved BRP ex-post
profits by 4.7% on the validation set and 4.34% on the test set.
e A noticeable reduction in costly overactivation of DR, demonstrated by a 77% reduction in
extreme overactivation cases that could disrupt the anticipated system imbalance.

This means the BRP was able to gain higher profit and better match consumer flexibility with market
needs by sending uncertainty-aware real-time prices that were less likely to overactive demand
response.

Next steps

Modeling Temporal Dynamics: Extend the DRR behavior model to capture time-dependent features
such as delayed or non-instantaneous responses, fatigue effects, and rebound behaviors.
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5. Conclusion and outlook

This deliverable has examined how a large-scale deployment of emerging LV flexibility mechanisms
affects system balancing, focusing on the interactions between consumers, communities, aggregators,
DSOs and the TSO. Building on three KERs, it has shown that the contribution of LV flexibility to
balancing cannot be assessed purely from a technical perspective. Instead, it depends on how local
mechanisms are designed, how consumer preferences and bounded rationality are reflected in those
mechanisms, and how system-level markets and coordination arrangements channel LV flexibility
towards the services where it has highest value.

Across the three KERs, a coherent picture emerges. At community and aggregator level, properly
designed internal pricing, baselining and revenue-sharing schemes are essential to turn diverse
household preferences into reliable flexibility offers for DSOs and, indirectly, for the TSO. At system
level, the organisation of TSO-DSO coordination and the design of coordinated flexibility markets
strongly influence the efficiency and robustness of balancing when strategic behaviour by flexibility
service providers is taken into account. For aggregators relying on price-based demand response,
value-oriented and uncertainty-aware learning approaches are needed to translate noisy, behaviour-
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driven price-response into activation strategies that support balancing without leading to systematic
over- or under-delivery.

Taken together, these insights have several implications for the future of balancing with LV flexibility
in Belgium. First, they confirm that LV flexibility can make a meaningful contribution to balancing and
distribution grid congestion management, but only if local mechanisms, business models and system
services are designed consistently. Misalignment between community incentives, DSO needs and TSO
products risks fragmenting scarce flexibility, increasing operational complexity and eroding the
economic benefits. Second, they underline the importance of explicitly incorporating consumer
behaviour and bounded rationality into the assessment of flexibility potential and into the design of
activation strategies, to avoid overestimating what LV resources can deliver in practice. Third, they
highlight that the rules governing competition and coordination between FSPs must be robust to
strategic behaviour and limited liquidity, otherwise the efficiency gains of coordinated markets may
not materialise.

The outlook of this work is twofold. On the one hand, the models and insights developed in Task 4.1
provide concrete building blocks for an integrated Belgian framework for procurement and activation
of LV flexibility, to be further refined together with regulatory and operational stakeholders. This
includes the articulation between local flexibility mechanisms and balancing products, the definition
of transparent baselining and verification procedures that are compatible with consumer
heterogeneity, and the clarification of roles and incentives for DSOs and aggregators in supporting
system services. On the other hand, the work points to several directions for future research and
development: extending behavioural models to capture longer-term learning and temporal dynamics;
improving observability and data flows between LV grids, aggregators and system operators; and
testing the proposed mechanisms in pilots and regulatory sandboxes to validate their performance
under real-world conditions.
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