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Executive summary  

ALEXANDER, Accelerating Low voltagE fleXibility pArticipation iN a griD safE manner, develops 
methods and tools to unlock flexibility from low-voltage (LV) assets for system services in a grid-safe 
and socially acceptable way. Within this framework, Task 4.1, Implications for balancing, analyses how 
a large-scale deployment of emerging local flexibility mechanisms – as developed in WP2 and WP3 – 
will affect system balancing and the interaction between regulated and unregulated market players. 

Balancing with LV flexibility: focus of Task 4.1 
Deliverable 4.1 reports on this analysis. It focuses on the role of energy communities, virtual power 
plants and aggregators of active prosumers as flexibility service providers (FSPs), and on how their 
business models, bidding strategies and internal decision-making processes translate into reliable 
provision of system services. The deliverable explicitly accounts for consumers’ preferences and 
possible bounded rationality, and studies how these behavioural aspects shape the amount, reliability 
and economic value of LV flexibility. 

Deliverable 4.1 starts from the observation that LV flexibility will increasingly be activated through local 
mechanisms: local energy markets (LEMs) and local flexibility markets (LFMs), dynamic tariffs, 
connection agreements and community-based coordination schemes. When such mechanisms are 
deployed at scale, they will influence how much flexibility remains available for system balancing, how 
predictable and controllable that flexibility is, and how risks and benefits are distributed across actors. 

Against this background, Deliverable 4.1 pursues three main objectives: 
 to assess how emerging business models (energy communities, aggregators) affect the 

capability of FSPs to provide reliable balancing services when consumer preferences and 
bounded rationality are taken into account; 

 to analyse how interactions between FSPs at system level should be organised so that 
operational stability is guaranteed while economic efficiency is maximised; 

 to evaluate the operational and financial impact on system operators (TSO and DSOs) of a large 
deployment of LV flexibility models, and to derive building blocks for an integrated Belgian 
framework for procurement and activation of LV flexibility, in line with the recommendations 
from Task 3.3. 

Approach and scope of Deliverable 4.1 
The deliverable brings together three complementary modelling and analysis strands: 

 Community- and aggregator-level mechanisms. 
 Models of local energy markets and local flexibility markets translate heterogeneous user 
preferences (financial, comfort, environmental) and technical constraints into net demand 
baselines and flexibility offers that are meaningful for DSOs and TSOs. 

 TSO–DSO market coordination and strategic interaction. 
Game-theoretic tools are used to explore how different designs of coordinated flexibility 
markets (e.g. common, multi-level, fragmented) perform when FSPs behave strategically and 
when liquidity is limited, highlighting risks for efficiency and operational security. 

 Price-based demand response for balancing under uncertainty. 
Data-driven, inverse-optimisation methods are developed and tested to learn residential 
price-response from historical data and to design aggregator participation strategies in 
balancing services that are robust to behavioural uncertainty, focusing on value for balancing 
rather than purely on forecast accuracy. 
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These strands jointly cover the micro-level decisions of end-users and communities, the meso-level 
strategies of aggregators and FSPs, and the macro-level organisation of system services and 
coordination between system operators. 

Key implications for balancing and for an integrated Belgian framework 
From the combined analyses, several cross-cutting insights emerge that are relevant for Belgian 
balancing arrangements and the future framework for LV flexibility: 

 Business models and actors – Local flexibility mechanisms enable new roles for energy 
communities and aggregators, but also redistribute responsibilities and risks. Reliable 
provision of balancing/flexibility services from LV assets requires that these actors can 
aggregate diverse resources, manage internal conflicts between comfort and economic 
incentives, and honour external commitments towards DSOs and the TSO. 

 Market design and coordination – The way in which TSO and DSOs coordinate procurement 
and activation of flexibility has a direct impact on system-wide efficiency and on exposure to 
strategic behaviour. Designs that ensure sufficient competition, avoid fragmentation of 
liquidity and provide clear priority rules for local versus system needs are essential to 
safeguard operational stability while making best use of LV flexibility. 

 Consumer behaviour and uncertainty – The effective balancing potential of LV flexibility is 
smaller and more uncertain than technical assessments suggest, because households care 
about comfort and other non-financial motives and do not always respond perfectly rationally 
to price signals. Modelling preferences and bounded rationality, and using value-oriented 
learning approaches, improves the robustness of balancing strategies and reduces the risk of 
over- or under-delivery. 

 System operators and operational impact – A large deployment of LV flexibility mechanisms 
will increase the need for grid visibility, forecasting tools and coordinated activation 
procedures at DSO level, and will change the volume, timing and predictability of flexibility 
seen by the TSO. While this can reduce the need for conventional reinforcement and central 
reserves, it also requires clear cost-recovery mechanisms and incentives for DSOs to actively 
procure and facilitate LV flexibility. 

 Towards an integrated Belgian framework – Combining the above insights with the 
recommendations from Task 3.3, the deliverable points to the key building blocks of an 
integrated Belgian framework for LV flexibility: coherent products for system services that are 
accessible to LV resources; transparent baselining and verification; harmonised TSO–DSO 
coordination rules; and clear allocation of roles, responsibilities and incentives between 
regulated (TSO/DSOs) and unregulated actors (communities, aggregators). 

Overall, Deliverable 4.1 shows that the implications of LV flexibility for balancing cannot be understood 
by looking at technology alone. The way local mechanisms are designed, how consumer behaviour is 
represented, and how system-level markets are organised jointly determine whether LV flexibility 
strengthens operational security and delivers economic benefits, or introduces new risks. The findings 
provide input for the ALEXANDER roadmap and for ongoing regulatory discussions on the future design 
of balancing and LV flexibility in Belgium. 
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1. Introduction 

1.1. Context 

Europe’s electricity systems are entering a phase in which flexibility becomes as critical as capacity. 
Rising shares of variable renewable generation, the electrification of heating and mobility, and 
increasing congestion at distribution level all push system operators to make more active use of 
demand-side flexibility. A significant part of this flexibility potential is connected at the low-voltage 
(LV) grid, through assets such as rooftop PV, residential batteries, electric vehicles (EVs) and heat 
pumps (HPs), often coordinated via energy communities, virtual power plants (VPPs) or aggregators of 
active prosumers. 

In parallel, new local flexibility mechanisms are emerging at LV level. Building on the work of 
ALEXANDER WPs 2 and 3, these mechanisms include local energy and flexibility markets, dynamic 
tariffs, non-firm connection agreements and operating envelopes, as well as new community-based 
coordination schemes. While these instruments are primarily designed to address local network issues 
and to enable consumer participation, their large-scale deployment will inevitably affect how much LV 
flexibility is available for system balancing and congestion management, how reliably it can be 
activated, and how risks and benefits are shared between actors. 

Belgium offers a particularly relevant context for this analysis. The coexistence of three regional 
regulatory frameworks, evolving arrangements for TSO–DSO coordination, and a fast-growing stock of 
distributed resources mean that LV flexibility will play an increasing role in adequacy and balancing. At 
the same time, balancing products, prequalification procedures and market rules have historically 
been shaped around large, centralised resources. Understanding how emerging LV-oriented 
mechanisms interact with system-level services is therefore essential for designing an integrated 
Belgian framework for procurement and activation of LV flexibility. 

Task 4.1 “Implications for balancing” is positioned at this interface between local mechanisms and 
system needs. It investigates how large-scale deployment of LV flexibility models, as defined in WP2 
and WP3, impacts balancing arrangements, the functioning of system services, and the roles of both 
regulated and unregulated players. 

1.2. Challenges 

The integration of LV flexibility into system balancing and congestion management raises several 
interconnected challenges that go beyond purely technical considerations. 

First, new business models and actors change how flexibility is organised and offered. Energy 
communities, VPPs and aggregators bundle small-scale assets and mediate between end-users, DSOs 
and the TSO. Their internal decision-making, including how they design baselines, share costs and 
benefits, and manage comfort versus savings, directly affects the volume and reliability of flexibility 
they can commit to system services. The ability of flexibility service providers (FSPs) to deliver 
balancing products therefore depends not only on technology, but also on incentives, governance 
structures and contractual arrangements at community and aggregator level. 

Second, the behaviour of end-consumers introduces uncertainties. Households value comfort, 
autonomy and environmental impact alongside financial gains, and they may not respond in a fully 
rational or perfectly predictable way to price signals or activation requests. If these aspects are 
ignored, activation strategies may lead to systematic over or under-delivery in balancing/flexibility 
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services. Considering preferences and bounded rationality in quantitative models is thus key to 
assessing the real contribution of LV flexibility to system stability. 

Third, interactions between FSPs at system level can create coordination and efficiency issues. As 
more actors bid LV-sourced flexibility into balancing and other system services, competition and 
strategic behaviour become important. Market design and TSO–DSO coordination rules influence 
whether flexibility is used where it has highest system value, or whether fragmentation, double 
activation and local market power lead to inefficiencies and operational risks. 

Finally, there are operational and financial implications for system operators. DSOs must ensure grid-
safe activation of LV flexibility while dealing with limited observability, data constraints and regulatory 
obligations. The TSO must secure sufficient, reliable balancing capacity and energy in a context where 
part of the flexibility is activated locally for congestion management. Both levels need clear procedures 
and cost-recovery mechanisms if LV flexibility is to become a structural component of balancing rather 
than an ad-hoc resource. 

Task 4.1 addresses these challenges by explicitly modelling the interactions between consumers, 
communities, aggregators, DSOs and the TSO, and by analysing how different local flexibility 
mechanisms and market designs perform when behavioural aspects and strategic incentives are taken 
into account. 

1.3. Scope 

Deliverable 4.1 reports on the work carried out in Task 4.1 between M24 and M42. In line with the task 
description, its scope is threefold: 

 Impact of emerging LV business models on system-service provision. 
 The deliverable examines how energy communities, VPPs and aggregators of active 
prosumers, operating under the mechanisms developed in WP2 and WP3, affect the ability of 
FSPs to reliably provide balancing and related system services. Particular attention is paid to 
how consumer preferences, comfort considerations and bounded rationality influence the 
flexibility that can be contracted and delivered. 

 Organisation of competition between FSPs for operational services. 
 Building on game-theoretic and optimisation-based models, the deliverable analyses how 
interactions between multiple FSPs at system level should be organised to guarantee 
operational stability while maximising economic efficiency. Different TSO–DSO coordination 
schemes and market designs are compared in terms of their effectiveness in integrating LV 
flexibility and their vulnerability to strategic behaviour. 

 Impacts on system operators and contribution to an integrated Belgian framework. 
 The deliverable assesses how a large-scale deployment of LV flexibility mechanisms affects 
DSOs and the TSO, both operationally and financially. Based on these insights, and in 
conjunction with the recommendations from Task 3.3, it identifies key building blocks for an 
integrated Belgian framework for procurement and activation of LV flexibility, ensuring 
coherent treatment of LV resources across congestion management, balancing and other 
system services. 
 

These questions are addressed through three main modelling and analysis strands, each associated 
with a Key Exploitable Result (KER) of ALEXANDER Task 4.1: 

 community-level mechanisms for providing baseline-based flexibility services to DSOs; 
 simulation environments for coordinated TSO–DSO flexibility markets and strategic FSP 

behaviour; 
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 data-driven frameworks for price-based residential demand response participation in 
balancing services under behavioural uncertainty. 

Rather than presenting these KERs in isolation, Deliverable 4.1 emphasises their combined implications 
for balancing and their relevance for Belgian stakeholders. 

1.4. Organisation 

The remainder of this deliverable is structured around three KERs and a concluding section. The first 
KER section focuses on how communities and aggregators organise LV flexibility and offer it to DSOs, 
the second on TSO–DSO coordination and competition between flexibility service providers in 
coordinated markets, and the third on data-driven frameworks for price-based residential demand 
response participation in balancing. The final section synthesises the implications of these three KERs 
for system balancing in Belgium and outlines key design principles for an integrated framework for LV 
flexibility. 
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2. KER 1: Energy Communities providing flexibility services 

for Distribution System Operators 
 

2.1. An Innovative Framework for Heterogeneous Energy Communities 

Providing Baseline Flexibility Services in Distribution Networks [1] 

Motivation 
The increasing proliferation of distributed energy resources (DERs) such as solar PV, battery storage, 
and electric heat pumps is reshaping the operational dynamics of modern power distribution 
networks. While DERs offer promising solutions for decentralization and decarbonization, they also 
pose significant technical challenges, most notably line congestion and voltage regulation issues at the 
distribution level. Addressing these challenges traditionally involves grid reinforcement, but such 
measures are capital-intensive, slow, and inflexible to localized variations. A more adaptive alternative 
lies in the use of flexibility services, which allow DSOs to manage demand and supply variations using 
controllable resources across the network. 
Energy Communities (ECs) (groups of prosumers and consumers sharing local energy resources) have 
emerged as promising contributors of such flexibility services. Through coordinated energy trading and 
DER sharing, ECs can provide demand response capabilities, promote self-consumption, and ease 
pressure on the grid. However, realizing this potential in practice requires addressing key challenges 
related to user behavior, market design, and system-level integration. 
  
Objectives and Contributions 
This study introduces an innovative framework for enabling heterogeneous ECs to effectively 
participate in flexibility markets, offering a mechanism through which DSOs can procure flexible 
services while respecting the internal dynamics of ECs. Unlike capacity limitation models where power 
consumption caps are imposed, baseline mechanisms define a reference consumption level from 
which flexibility is measured. While more adaptable, baseline mechanisms are vulnerable to strategic 
behavior and uncertainty, especially when users have diverging motivations. 
The paper addresses several critical gaps in current research and implementation: 

1. User Preference Integration: Many existing frameworks lack mechanisms that account for 
diverse user preferences—financial, environmental, and comfort-related—leading to limited 
understanding of user behavior. 

2. Baseline Manipulation Risk: Without careful design, users may game the system by inflating 
their historical consumption, increasing baseline values and securing undue compensation. 

3. Inadequate Valuation of Flexibility: Flexibility services are often compensated using uniform 
or cost-based approaches, overlooking users’ true marginal contributions to network support. 

4. Neglect of Network Constraints: Local voltage and congestion constraints, particularly in LV 
networks, are frequently omitted, risking grid reliability when implementing distributed 
flexibility. 

  
 
 
 
Overview of Methodology  
To address these challenges, we propose a three-stage methodological framework, combining game 
theory, bilevel optimization, and power system modeling to deliver a realistic and operationally sound 
approach.  
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The structure of EC is depicted in Figure 1. In this framework, Community Manager (CM) is responsible. 
For coordinating EC including energy exchanges between the members and financial transaction. 
Retailer supports the EC for energy balancing by purchasing surplus electricity selling deficit power to 
the CM. The DSO is also responsible for grid safety and coordinates with CM for flexibility service 
provision. 
  

 
Figure 1: The structure of energy community and interactions with other entities 

 
Stage 1: Local Energy Market (LEM) with Preference-Aware Design 
In the first stage, energy transactions within the EC are governed by a Stackelberg game (SG) between 
the CM and community users. The CM sets internal electricity prices considering retail tariffs, 
distribution grid fees, and network constraints. In response, users schedule their resource activities 
based on a personalized utility function that incorporates three weighted preferences: 

 Financial savings; 
 Environmental impact (based on CO₂ intensity of energy); 
 Thermal comfort (modeled via indoor temperature deviation). 

This interaction is modeled as a bilevel programming problem, where the CM solves an upper-level 
optimization to minimize the total cost of imports, exports, and grid usage, while users solve individual 
lower-level problems to maximize utility. The bilevel model includes: 

 Power flow constraints in the radial LV network using LinDistFlow equations; 
 Operational limits on battery storage, heat pumps, and energy exchanges; 
 Voltage and power constraints at all nodes. 

The bilevel formulation is reformulated into a single-level mixed-integer quadratic program using the 
Karush-Kuhn-Tucker conditions, allowing for tractable computation. 
The outcome of this stage includes net demand baseline values and estimated flexibility prices for each 
EC, which are communicated to the DSO for subsequent planning. 
  
Stage 2: Local Flexibility Market (LFM) with Congestion Management 
In the second stage, the DSO uses the submitted baseline power and price data to optimize congestion 
management across the medium-voltage (MV) distribution network. The object of the problem is to: 

 Allocate upward and downward flexibility requests; 
 Ensure power balance and voltage limits across all MV buses; 
 Minimize overall flexibility procurement costs, including power losses. 

Once flexibility needs are identified, the CM coordinates with users to adjust schedules within their 
available DER capacities, ensuring that the community collectively meets its obligations without 
violating baseline commitments or local constraints. A penalty mechanism is introduced to discourage 
deviation from baseline values and mitigate strategic behavior. 
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Stage 3: Flexibility Valuation and Fair Revenue Allocation 
After flexibility services are delivered, financial compensation is allocated using Distribution Locational 
Marginal Prices. Internally, each CM employs the Shapley value method to distribute rewards among 
users based on their actual contribution to flexibility provision. This game-theoretic approach ensures: 

 Fairness across heterogeneous participants; 
 Recognition of users with higher flexibility impact; 

  
Main Findings 
This study explores how different types of energy communities—each with distinct user preferences—
participate in local energy and flexibility markets. Five community archetypes were modeled: comfort-
driven (CMF), financial-driven (FIN), environmental-driven (ENV), balanced (BAL), and mixed-
preference (MIX). The initial results demonstrate clear differences in operational behavior, flexibility 
provision, and economic outcomes across these communities. 
In the LEM stage, user preferences strongly influence internal buying and selling prices. Comfort and 
environmental communities exhibit higher internal buying prices due to their strong non-financial 
motives, whereas financial community shows lower prices, prioritizing cost efficiency. This directly 
impacts energy scheduling and resource usage, with CMF community purchasing heavily during low-
cost hours to preserve comfort, while FIN and MIX communities strategically time imports and exports 
for economic gain. 
The transition to the LFM highlights how communities adapt their flexible resource schedules 
(batteries and heat pumps) in response to system-level requests.  
According to Tables 1 and 2, cost and revenue analysis shows that FIN achieves the lowest LEM 
operational costs and the highest LFM revenues, validating the effectiveness of financial-driven 
strategies. BAL and MIX communities perform moderately across all dimensions, while CMF and ENV 
face higher costs and lower revenues. The Shapley value is used for fair revenue allocation, rewarding 
communities proportionally to their flexibility contributions. 
  

Table 1: Operation costs of different EC members participating in LEM 

Users 
Users Operation Costs in LEM 

CMF FIN ENV BAL MIX 
User 1 111.10 152.18 162.08 111.32 179.94 
User 2 114.44 104.01 114.07 122.22 138.67 
User 3 190.98 108.71 128.87 133.55 103.10 
User 4 157.87 102.28 146.52 162.75 109.84 
User 5 231.04 141.03 135.73 207.35 106.33 

  
 
 
 

Table 2: Revenues of participating in LFM for different EC members 

EC Type Total 
Revenues 

Revenue Allocation Using Shapely Value Method 

User 1 User 2 User 3 User 4 User 5 
CMF 40.95 9.04 8.75 8.99 7.58 6.57 
FIN 99.37 28.71 29.60 28.66 26.24 26.22 
ENV 47.74 6.93 7.55 7.99 12.75 12.59 
BAL 63.58 9.53 13.29 10.19 12.69 17.86 
MIX 68.72 10.77 13.73 17.72 7.23 19.25 

  
Next Steps 
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For the next steps more analysis on physical network constraints including active power flow should 
be conducted to see impact of various ECs on grid conditions. In addition, the research paper regarding 
this research should be completed.  
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3. KER 2: Strategic Behaviour in TSO-DSO coordinated 

Flexibility Markets 
 

3.1. Strategic behavior in TSO-DSO coordinated flexibility markets: A 

Nash equilibrium and efficiency analysis [2] 

Motivation 
Strategic behavior refers to the actions taken by market participants, such as Flexibility Service 
Providers (FSPs), to maximize profits by leveraging market rules, conditions, or competitors' actions. 
Accounting for strategic behavior in flexibility market analyses is critical because the assumption that 
FSPs bid solely at marginal costs oversimplifies market dynamics and fails to reflect the complexities 
of real-world competition. 
 
Strategic bidding can significantly impact market efficiency, exposing vulnerabilities in market design. 
Depending on the structure of flexibility markets, FSPs with dominant market shares or access to 
isolated resources may exploit their positions by bidding aggressively or manipulating prices. For 
example, fragmented market designs—where markets are separated by service (e.g., congestion 
management and balancing) or by system operator (e.g., DSOs and TSOs)—can lead to increased costs 
due to reduced competition and monopolistic behavior by FSPs. Additionally, gaming strategies, such 
as the "inc-dec" game or exploiting congestion to create local monopolies, can undermine the primary 
objectives of flexibility markets. By leveraging grid constraints, FSPs can isolate parts of the network, 
gaining disproportionate pricing power, which directly increases system operators’ costs and reduces 
market fairness. 
 
Even in competitive markets, strategic behavior can create opportunities for market power. In 
scenarios with low liquidity or insufficient coordination between flexibility buyers, dominant FSPs can 
influence prices and maximize profits, resulting in suboptimal resource allocation and reduced overall 
efficiency. These challenges highlight the importance of carefully designed market rules to prevent 
exploitation and encourage fair competition. 
 
Strategic behavior is not only possible but inevitable in markets involving profit-driven participants. 
Ignoring this aspect would oversimplify analyses and lead to unrealistic conclusions. Simulating FSP 
decision-making under realistic conditions—taking into account full or partial information and varying 
levels of participants’ computational capability—ensures a more accurate understanding of market 
outcomes and provides insights into mitigating potential inefficiencies of certain designs. 
 
Objectives and Contribution 
In this work, the strategic behavior of FSPs is analyzed within a duopolistic setting involving the 
procurement of flexibility by a TSO and a DSO. The study explores three market designs—common, 
fragmented, and multi-level markets—to investigate how varying levels of resource sharing and 
coordination affect market outcomes and the potential for gaming by FSPs. In the common market 
design, all FSPs are pooled together, and the market is jointly cleared by the TSO and DSO, ensuring 
centralized coordination and access to all available resources. In the fragmented market model, system 
operators clear their markets independently, with resources being exclusively available to the SO 
managing the network to which they are connected. Finally, the multi-level market introduces a 
sequential design, granting DSOs priority access to local resources in the first stage, while any 
remaining resources are made available to the TSO in the second stage. These designs capture varying 
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degrees of TSO-DSO coordination, providing a framework for assessing the impact of strategic behavior 
on market efficiency and competition. 
 
Overview of Methodology 
A detailed mathematical analysis of strategic bidding in those markets, considering a duopolistic 
setting, is performed by using tools from game theory. Specifically, the existence of equilibria of this 
interaction between FSPs and the market and how strategic behaviors impact market efficiencies 
under the different practical market settings are analyzed. Subsequently, a structured comparison 
between different TSO-DSO coordination schemes can be derived. A numerical simulation study is also 
conducted to illustrate and validate the theoretical results. The analytical methodology of this study is 
summarized in Figure 2-.  
 

 
Figure 2:- Methodology of the study 

 
Main findings 
Notable differences in market performance across the three designs can be observed from the 
analysis. The common market emerges as the most efficient, leveraging optimal resource pooling and 
centralized clearing to minimize inefficiencies and enhance competition. By allowing all resources to 
compete in a single clearing process, it reduces the opportunities for FSPs to exploit market power. In 
contrast, the fragmented market demonstrates how the absence of coordination between TSOs and 
DSOs can amplify inefficiencies. The separation of markets limits competition, enabling FSPs to 
manipulate prices by exploiting reduced liquidity and localized monopolies.  
 
The multi-level market provides an intermediate level of efficiency. While its sequential structure 
improves upon the fragmented market by introducing partial resource sharing, it still leaves room for 
strategic behavior due to the prioritization of DSOs in the first stage. This design allows for some 
coordination but introduces complexities that can reduce overall market efficiency if not carefully 
managed. For example, FSPs in local markets may still leverage congestion or limited competition to 
influence prices, though the second-level access for TSOs mitigates these effects to some extent. 
 
These findings underscore the critical importance of market design in mitigating strategic behavior. 
This study demonstrates that greater coordination between TSOs and DSOs, as exemplified by the 
common market, can significantly enhance market efficiency and reduce the risk of gaming. However, 
the challenges of achieving such coordination in practice highlight the need for innovative solutions to 
balance decentralized decision-making with the benefits of resource sharing. 
 
 

3.2. Analyzing the Impact of Flexibility Service Providers Bidding 

Behavior: a k-level Reasoning Approach  

Motivation 
Historically, flexibility markets have operated exclusively at the TSO level. Examples include balancing 
markets for manual frequency restoration reserve (mFRR), automatic frequency restoration reserve 
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(aFRR), and frequency containment reserve (FCR). The emergence of local (DSO-level) flexibility 
markets as a flexibility mechanism to resolve grid issues in distribution systems, such as congestion, 
has significantly transformed the flexibility market landscape. The coexistence of TSO- and DSO-level 
flexibility markets introduces various market coordination schemes between TSOs and DSOs.  This 
study focuses on three general coordinated market schemes: fragmented, sequential/multilevel, and 
common market schemes. 
 
A critical yet underexplored factor influencing the efficiency of the previously mentioned emerging 
market models is the strategic behavior of participants and its potential effects on market design and 
performance. In TSO–DSO coordinated markets, flexibility service providers (FSPs) offering flexibility 
through bids are likely to adopt bidding strategies aimed at maximizing their expected revenues, an 
approach referred to here as strategic bidding. 
 
Objectives and Contribution 
This work analyzes the strategic behavior of FSPs in TSO–DSO coordinated market models while fully 
accounting for network constraints. Using a Stackelberg game framework, it evaluates three distinct 
designs, namely a common market, a fragmented market, and a multi-level market, highlighting 
differences in resource sharing, market sequencing, and priority access, and assessing their 
performance under strategic bidding. To better reflect real-world decision-making, the study 
incorporates a bounded rationality approach through a k-level reasoning model, capturing varying 
complexities in FSP behavior. The methodology is applied to a realistic interconnected TSO–DSO 
system facing congestion and imbalance, with extensive simulations providing insights into how 
market design and strategic behavior interact to influence efficiency. 
 
Overview of Methodology 
To analyze how FSPs bid strategically and how such behavior affects the flexibility market, we adopt a 
Stackelberg game-theoretic modeling approach. In this framework, FSPs are modeled as leaders 
playing a non-cooperative game, each aiming to maximize their individual market profits. The market 
operator acts as a follower, responding to the collective decisions (i.e., bids) of the FSPs by executing 
the market-clearing process. This hierarchical interaction between strategic FSPs and the market 
operator leads to the formulation of a Stackelberg game, which can be translated into an Equilibrium 
Problem with Equilibrium Constraints (EPEC), capturing the interdependence of FSPs' strategic 
behavior and the market-clearing outcome. Moreover, we incorporate the notion of bounded 
rationality in our modeling. Rather than assuming FSPs always compute an exact equilibrium of the 
EPEC, we allow for approximate reasoning through k-level reasoning. Under this assumption, FSPs do 
not necessarily find an equilibrium but instead engage in iterative best-response dynamics, where each 
FSP chooses its strategy based on beliefs about the strategies of others. This approach provides a more 
realistic representation of decision-making behavior under limited information. 
 
Building on the strategic bidding model described previously, we conducted an extensive set of 
numerical simulations to evaluate the influence of such behavior across the three flexibility market 
schemes: fragmented, sequential, and common markets. In addition to the baseline scenarios, two 
special cases were investigated: 

- A low liquidity market scenario, where the number of active market participants is limited. 
- An aggregation scenario, in which an FSP controls a pool of resources and can bid them 

collectively 
 
Main Findings 
Our numerical simulation study yielded several key insights: 

- Impact of market fragmentation and liquidity: 
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Market fragmentation and low liquidity can amplify the potential for market power, as fewer 
available resources increase the influence of individual FSPs on market outcomes. Among the 
examined schemes, the common market scheme demonstrated superior performance in 
mitigating market power, owing to its more integrated and liquid structure. In contrast, 
fragmented and sequential schemes were more vulnerable to inefficiencies under low-
participation conditions. 

- Congestion-induced market power: 
Congestion at the TSO–DSO interconnection points can lead to localized market power or even 
monopolistic conditions, regardless of the coordination scheme employed. This finding 
highlights the critical role of network constraints in shaping strategic opportunities and 
underscores the need for market designs that explicitly address congestion management at 
interconnection points. 

- Effects of resource aggregation: 
When an FSP aggregates multiple resources, it may exercise price manipulation strategies more 
effectively. However, the common market scheme proved to be more robust against such 
manipulation due to its higher liquidity and larger competition pool. This suggests that 
centralized, co-optimized market designs may offer more resilience to strategic exploitation by 
large aggregators. 
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4. KER 3: Price-Based Demand Response Participation in 

Balancing Services 
As Belgium transitions to a carbon-neutral energy system, integrating flexible electricity consumption 
is becoming essential. The growing share of variable renewable energy sources, such as wind and solar, 
requires new approaches to balance supply and demand while maintaining grid reliability and 
controlling costs. Demand Response (DR) programs, which allow consumers to voluntarily adjust their 
energy usage in response to dynamic conditions or price signals, offer a promising solution. By 
leveraging distributed demand-side resources, these programs can help balance supply and demand, 
reduce dependence on fossil fuels, and contribute to a more resilient power system.  
 
In Belgium, small-scale residential assets are expected to play a key role in this transformation. Elia’s 
adequacy study projects that by 2034, the country could see approximately 143,000 home batteries, 
930,000 smart-charging electric vehicles, and 300,000 controllable heat pumps participating in grid 
flexibility. In high-flexibility scenarios, these numbers could exceed 2 million electric vehicles and 1.2 
million heat pumps. If well-coordinated, such resources could reduce Belgium’s projected capacity gap 
by up to 1.1 GW—more than double the potential contribution of industrial flexibility alone. 
Economically, this shift could generate annual system-wide savings of €205 million to €438 million, 
primarily by reducing the need for reserves and capacity remuneration. 
 
Residential flexible energy assets are typically connected to the low-voltage electricity grid. 
Individually, these assets are small in scale and often lack the monitoring systems to meet strict 
technical standards for telemetry, verification, or bidding thresholds required for participating in 
electricity markets. As a result, a single household cannot typically participate directly in these markets. 
To overcome this, aggregators play a key role. They group together many residential energy users to 
form a larger, more predictable resource that can interact with the grid in a meaningful way. 
Aggregators manage the important tasks of forecasting energy use, tracking consumption (metering), 
and coordinating responses across the group. This allows aggregated households to provide energy 
flexibility services just like larger commercial or industrial users. 
 
To manage and influence when and how households use electricity, aggregators generally use one of 
two coordination strategies: direct control or indirect control. Direct control involves sending specific 
on/off signals to devices within homes, such as turning off water heaters or reducing battery charging 
at certain times. While this approach can be effective and precise, it raises concerns about scalability 
and consumer privacy, since it requires a high level of access and communication with individual 
devices. Indirect control, on the other hand, influences consumer behavior without direct interference. 
A common and effective method here is dynamic pricing, where electricity prices vary over time to 
reflect real-time supply and demand conditions. One of the most notable forms of dynamic pricing is 
Real-Time Pricing (RTP). Under RTP, electricity prices are updated frequently (e.g. hourly, quarter-
hourly, etc.,) based on conditions in the power system. This encourages consumers to adjust their 
energy use in response to price signals, for example by running appliances when electricity is cheaper. 
RTP is especially beneficial in systems with a high share of renewable energy, where supply can be 
variable and less predictable. 
 
However, RTP’s effectiveness depends on the ability to accurately predict consumer responses to price 
signals (hereafter referred to as price-response behavior). Unlike direct control schemes, RTP does not 
require formal commitments, resulting in voluntary and highly variable participation. This variability is 
further complicated by consumers’ bounded rationality, as consumers may find it difficult to make 
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consistent, cost-effective decisions in response to fluctuating prices. Limited insights into individual or 
collective preferences and constraints also hinder the ability to model or forecast behavior accurately. 
 
This unpredictability poses financial risks for aggregators. Misestimating consumer behavior can lead 
to over-activation or under-activation of demand-side flexibility, which could result in missed 
opportunities or even penalties. To address these challenges, in the first task—detailed in Section 4.1—
we investigate state-of-the-art data-driven optimization techniques for estimating how residential 
consumer groups respond to price signals. Building on this, we introduce a novel model selection 
framework for consumer response to price signals that integrates the financial consequences of 
uncertainty into both estimation and decision-making processes. Finally, we evaluate the performance 
of our proposed method in the context of a balance responsible party (BRP) relying on small-scale 
consumers as its demand response resources (DRRs), providing implicit reserve to the Belgian single-
price imbalance settlement mechanism. 
 
In the second contribution, presented in Section 4.2, we build on previous work by introducing a novel 
heuristic approach for developing a data-driven, multi-scenario price-response model for DRRs. This 
model allows the aggregator to consider multiple possible consumer behavior patterns in reaction to 
price signals during real-time decision-making. The goal is to support a more conservative, uncertainty-
aware participation of a BRP managing small-scale consumers under Belgium’s single-price imbalance 
mechanism, thereby facilitating the integration of flexible residential demand into the country’s 
evolving energy system. 
 

4.1. Price-Based Demand Response Participation in Balancing Services: 

A Value-Oriented Inverse Optimization Framework [3] 

Motivation 
To develop the price-responsive behavior of DRRs and support price-based DR programs, Inverse 
Optimization (IO) has emerged as a promising approach for learning such behavior from historical data. 
IO offers interpretable, decision-compatible models that integrate smoothly into the operational 
frameworks of aggregators. Unlike black-box machine learning models, IO retains the structural 
rationale behind consumer behavior, which is essential for optimization-based applications. However, 
traditional data-driven IO methods typically focus on minimizing forecast errors. This approach can be 
misleading in practical settings, particularly when inferred consumer flexibility is embedded within an 
aggregator’s decision-making process in electricity markets. This is because not all forecast errors 
result in equal financial consequences. Recent studies highlight that forecast effectiveness should be 
evaluated based on ex-post decision value, i.e., the actual profit realized after observing system 
outcomes. Some forecast errors may have minimal operational impact, while others can lead to 
significant financial losses, depending on the magnitude of the error, the state of the system, and 
market conditions. Consequently, there is a growing need for value-oriented learning, where model 
selection emphasizes minimizing decision-making regret. In this context, regret refers to the difference 
between the profit actually achieved and the best possible profit that could have been achieved with 
perfect information. Prioritizing regret minimization over forecast accuracy is essential for making 
decisions that are more aware of uncertainty and lead to better economic outcomes in real-world 
conditions. 
 
Objective and Contribution 
The main objectives of this research are, first, to implement the aggregate DRRs flexibility model, 
obtained using IO, into the decision-making problem of a BRP (the aggregating entity in this study), 
and second, to develop a model selection framework for IO that takes into account the financial 
impacts of the IO model’s forecast errors when implemented in the BRP’s decision-making process.  
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The key innovation lies in shifting the IO model selection process from a forecast-accuracy objective to 
a decision-making regret-minimization objective, without fully embedding the decision problem into 
the training phase (which would be computationally prohibitive). Instead, the proposed Value-
Oriented IO (VOIO) framework evaluates IO hyperparameters based on their downstream impact on 
BRP profitability.  
 
To test the effectiveness of the proposed framework, a case study using Belgian market data is 
conducted. The BRP is assumed to control a portfolio of DRRs and must decide on daily price signals to 
elicit the desired flexibility. Historical DA prices and DRR consumption data are used to build and 
validate the models. Performance is assessed in terms of both forecast error and ex-post financial 
outcomes. 
 
Overview of the methodology 
The paper models the BRP’s strategic participation in the single-price imbalance market using a bilevel 
optimization framework (Figure 3) that captures the hierarchical interactions between the BRP, the 
balancing market, and DRRs. At the upper level, the BRP seeks to maximize its profit by deciding real-
time price signals to influence DRR consumption, thereby shaping its imbalance position. This profit 
depends on both the incentives paid to DRRs and the imbalance prices received from the market. The 
first lower-level problem models the aggregate price-response behavior of DRRs, using parameters 
estimated through the proposed IO model selection (Figure 4).  The second lower-level problem 
simulates the system operator’s market-clearing process, determining imbalance prices based on 
aggregate imbalances and reserve activation costs. This bilevel setup enables the BRP to exploit DRR 
flexibility while accounting for its impact on market prices, creating a closed-loop decision model that 
reflects real-world operational and market complexities. 
 

 
Figure 3:- Bilevel programming model for BRP’s decision-making in the 

single-price imbalance settlement market 
 
On the other hand, Figure 4 presents a high-level flowchart of the proposed value-oriented, data-
driven IO framework. The process starts with historical price-consumption data (a) and historical 
balancing market data (b), which serve as inputs to the IO stage (c). In this stage, various 
hyperparameter combinations—such as the granularity of DRRs’ consumption levels and the number 
of training days—are explored to build a consumption model that estimates DRRs’ aggregate 
willingness to pay for each consumption level. Each hyperparameter set results in a corresponding DRR 
model, which is then integrated into the BRP’s decision-making process during the validation period. 
This integration facilitates both the estimation of expected profits and the generation of price signals 
to be communicated to DRRs. To account for uncertainty in DRR responses to real-time prices, an ex-
post profit analysis (e) is conducted using real-time price data generated from each hyperparameter 
combination. This analysis evaluates actual profits under uncertain conditions. Based on the results, 
the most effective hyperparameter set is selected for future optimization. 
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Figure 4-: Overview of the workflow for the proposed Value-Oriented Data-
Driven Inverse Optimization Model Selection process (VOIO framework) 

 
 
Main findings 
The empirical evaluation of the VOIO framework yields several key findings: 
 

 Improved Financial Performance: Compared to a forecast-optimized baseline (FOIO), the 
proposed value-oriented method (VOIO) improved BRP ex-post profits by 2.69% on the 
validation set and 1.94% on the test set, despite having slightly lower consumption forecast 
accuracy. 

 Forecast Accuracy vs. Value Misalignment: The statistical correlation between forecast error 
and ex-post profit was negligible (Pearson r = 0.1, Spearman ρ = -0.02), highlighting that better 
forecasts do not guarantee better decisions—underscoring the need for value-based model 
evaluation. 

 Reduced Over-activation Losses: VOIO yielded more conservative real-time price signals, 
reducing BRP over-activation of balancing services: 

o 7.68% reduction in extreme over-activation cases that could disrupt the anticipated 
system imbalance 

 
Next steps 
Building on the VOIO framework, the following direction is proposed for future work: 

 Multi-Scenario Flexibility Curve Learning: Enhance the BRP’s decision-making process by 
extracting multiple flexibility curves for demand response resources (DRRs) from historical 
data. This approach aims to represent a range of possible DRR behaviors rather than relying 
on a single curve derived from the entire dataset. By incorporating multiple scenarios, the BRP 
can better account for uncertainty in DRRs’ price-responsive behavior at the time of decision-
making, leading to more robust and informed market participation. 

 
4.2. Price-Based Demand Response Participation in Balancing Services: A 

Multi-Scenario Inverse Optimization Framework 

Motivation 
The VOIO approach proposed in Section 4.1 improves the BRP’s profits by enabling a more conservative 
price-response modeling strategy compared to the FOIO benchmark. However, the resulting single 
price-response model for DRRs remains vulnerable to financial losses due to over- or underestimation 
of their reactions to real-time prices. This limitation can be addressed by transitioning from a single-
scenario model to a multi-scenario approach for modeling DRRs' price responses. While prior research 
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on scenario-based decision-making for DR aggregators has demonstrated both economic benefits and 
robustness, these methods often depend on a set of predefined scenarios or rely heavily on 
computationally demanding Monte Carlo techniques. These drawbacks limit their practical 
deployment in real-time market contexts. 
 
A promising direction is to leverage data-driven methods that can efficiently produce multiple price-
response models reflecting a range of plausible DRR behaviors. By accounting for variability—such as 
by fitting models to different quantiles of historical data—BRPs could make more informed real-time 
pricing decisions. Such scenarios would enable the BRP to calculate its profit for a given real-time price 
across a spectrum of DRR responses, from optimistic to pessimistic, and ultimately select a real-time 
price that remains profitable under all plausible outcomes. 
 
Objective and Contribution 
The objective is to develop a Scenario-Based Value-Oriented Inverse-Optimization (SBVOIO) 
framework that: 
 

 Automatically extracts multiple price-response scenarios of DRRs (e.g., lower- and upper-
quantile curves) from historical price-consumption data, 

 Embeds these scenarios into a scenario-aware bilevel model for the BRP’s participation in the 
balancing market, and 

 Selects IO hyperparameters by maximizing the expected ex-post profit across scenarios (i.e., 
minimizing multi-scenario regret). 

 
The main contributions of this work are as follows: 
 

 Heuristic quantile-based algorithm: A novel approach that adjusts the shape of the flexibility 
curve by systematically forcing each flexibility scenario to either over- or under-estimate 
historical consumption at a specified quantile level, in a computationally efficient manner. 

 Scenario-based bilevel BRP model: A comprehensive formulation in which the upper level 
maximizes expected profit by considering the DRRs’ flexibility scenarios extracted in the 
previous step. The first lower level captures the DRRs’ price-response scenarios, while the 
second lower level clears the balancing market for each scenario.  

 Scenario-Based Value-Oriented IO (SBVOIO) model-selection framework: An extension to 
value-oriented model selection in the previous contribution (Section 4.1) that combines the 
heuristic algorithm and bilevel model into a hyperparameter grid search. It selects the IO 
hyperparameters set that yields the highest ex-post profit across scenarios, reducing 
vulnerability to uncertainty. 

 Case study on the Belgian balancing market: Demonstrates that the SBVOIO approach 
reduces the mean absolute error (MAE) of profit compared to the VOIO method, while also 
reducing losses related to over-activation of services. 

 
Overview of the methodology 
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Figure 5: Overview of the workflow for the proposed Scenario-Based Value-
Oriented Inverse Optimization (SBVOIO) Model Selection process 

 
Figure 5 outlines the overall framework for selecting an inverse optimization model. The process begins 
with collecting historical data on price-consumption patterns (a) and balancing market data (b). A grid 
search is then conducted across different hyperparameter settings to configure the DRRs’ price-
response model (stages c–f). In stage (c), each hyperparameter combination is used to solve an IO 
problem that estimates a base single-scenario model capturing how DRRs respond to prices. In step 
(d), this base model and its corresponding hyperparameters are used to construct multiple DRR price-
response scenarios that reflect the uncertainty observed in historical data. These scenarios are 
incorporated into the BRP’s operational strategy and evaluated on a validation dataset to forecast 
expected profits and generate price signals aimed at influencing DRR behavior. Stage (e) evaluates 
each hyperparameter combination by performing an ex-post analysis, where DRR responses are 
perturbed to mimic their uncertain response to real-time prices and the impact on realized profits. 
Finally, in stage (g), the hyperparameters that deliver the highest realized profit under uncertain DRR 
behavior are selected for future deployment. 
 
Main findings 
In a case study using real-world data from the Belgian balancing market, we demonstrated  

 Compared to the VOIO as the baseline, the proposed SBVOIO method improved BRP ex-post 
profits by 4.7% on the validation set and 4.34% on the test set. 

 A noticeable reduction in costly overactivation of DR, demonstrated by a 77% reduction in 
extreme overactivation cases that could disrupt the anticipated system imbalance. 
 

This means the BRP was able to gain higher profit and better match consumer flexibility with market 
needs by sending uncertainty-aware real-time prices that were less likely to overactive demand 
response. 
 
Next steps 
Modeling Temporal Dynamics: Extend the DRR behavior model to capture time-dependent features 
such as delayed or non-instantaneous responses, fatigue effects, and rebound behaviors.  
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5. Conclusion and outlook  

This deliverable has examined how a large-scale deployment of emerging LV flexibility mechanisms 
affects system balancing, focusing on the interactions between consumers, communities, aggregators, 
DSOs and the TSO. Building on three KERs, it has shown that the contribution of LV flexibility to 
balancing cannot be assessed purely from a technical perspective. Instead, it depends on how local 
mechanisms are designed, how consumer preferences and bounded rationality are reflected in those 
mechanisms, and how system-level markets and coordination arrangements channel LV flexibility 
towards the services where it has highest value. 

Across the three KERs, a coherent picture emerges. At community and aggregator level, properly 
designed internal pricing, baselining and revenue-sharing schemes are essential to turn diverse 
household preferences into reliable flexibility offers for DSOs and, indirectly, for the TSO. At system 
level, the organisation of TSO–DSO coordination and the design of coordinated flexibility markets 
strongly influence the efficiency and robustness of balancing when strategic behaviour by flexibility 
service providers is taken into account. For aggregators relying on price-based demand response, 
value-oriented and uncertainty-aware learning approaches are needed to translate noisy, behaviour-
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driven price-response into activation strategies that support balancing without leading to systematic 
over- or under-delivery. 

Taken together, these insights have several implications for the future of balancing with LV flexibility 
in Belgium. First, they confirm that LV flexibility can make a meaningful contribution to balancing and 
distribution grid congestion management, but only if local mechanisms, business models and system 
services are designed consistently. Misalignment between community incentives, DSO needs and TSO 
products risks fragmenting scarce flexibility, increasing operational complexity and eroding the 
economic benefits. Second, they underline the importance of explicitly incorporating consumer 
behaviour and bounded rationality into the assessment of flexibility potential and into the design of 
activation strategies, to avoid overestimating what LV resources can deliver in practice. Third, they 
highlight that the rules governing competition and coordination between FSPs must be robust to 
strategic behaviour and limited liquidity, otherwise the efficiency gains of coordinated markets may 
not materialise. 

The outlook of this work is twofold. On the one hand, the models and insights developed in Task 4.1 
provide concrete building blocks for an integrated Belgian framework for procurement and activation 
of LV flexibility, to be further refined together with regulatory and operational stakeholders. This 
includes the articulation between local flexibility mechanisms and balancing products, the definition 
of transparent baselining and verification procedures that are compatible with consumer 
heterogeneity, and the clarification of roles and incentives for DSOs and aggregators in supporting 
system services. On the other hand, the work points to several directions for future research and 
development: extending behavioural models to capture longer-term learning and temporal dynamics; 
improving observability and data flows between LV grids, aggregators and system operators; and 
testing the proposed mechanisms in pilots and regulatory sandboxes to validate their performance 
under real-world conditions. 
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