

Implicit and explicit flexibility procurement mechanisms: unlocking the grid-safe use of LV flexibility

Inter-ETF Crosspollination Conference Gent, BE December 7, 2023

Sibelga

Anibal Sanjab and Wicak Ananduta VITO/EnergyVille

What is flexibility?

Changes in Belgium's electricity consumption (2010 – 2035) Source: Adequacy and Flexibility Study for Belgium (2024 – 2034) – *Elia, 2023*

Adequacy/Security of Supply

Impact of unlocking flexibility & timely built-out of HVDC interconnectors Source: Adequacy and Flexibility Study for Belgium (2024 – 2034) – *Elia, 2023*

Without additional measures to coordinate charging behavior, by 2030 (2040),

the evening peak load can overload up to 11% (21%) of distribution feeders

Source: Future impact of EVs on the Belgian electricity network – Baringa/Synergrid, 2019. EV uptake based on IEA Global EV Outlook 2018.

Consumption congestion map in the Netherlands Source: Capaciteitskaart elektriciteitsnet (netbeheernederland.nl)

Opportunities:

- ✓ Matching generation variability, reduce curtailment, contribution to system balancing
- ✓ Avoid elevated prices
- ✓ Benefit from reduced prices

Energy-Charts.info; Data Source: ENTSO-E; Last Update: 04/12/2023, 3:35 PM GMT+2

DA electricity prices in Belgium (energy-charts.info)

Opportunities:

- ✓ Matching generation variability, reduce curtailment, contribution to system balancing
- ✓ Avoid elevated prices
- ✓ Benefit from reduced prices

How to access flexibility?

Technology enablers of prosumers' flexibility:

Behavioral enablers of prosumers' flexibility:

Industrial flexibility

Residential (LV flexibility)

In *Elia's adequacy & flexibility study for Belgium for 2024-2034*: By **2030**, scenario estimation:

- Two-thirds of EVs are assumed to have a form of intelligent charging capabilities
- One-third of HPs are assumed to respond to local or market signals;
- Over half of home batteries are assumed to actively participate in the energy market.

Flexibility Mechanisms (Implicit and Explicit)

Technical solutions including network reconfiguration

Rule based solutions and connection agreements (direct control)

Tariff based solutions (indirect control)

455

Market based solutions (purchase flexibility)

Flexibility Mechanisms (Implicit and Explicit)

Technical solutions including network reconfiguration

Rule based solutions and connection agreements (direct control)

Implicit mechanisms

Tariff based solutions (indirect control)

Market based solutions (purchase flexibility)

Explicit mechanisms

Dynamic connection agreements and prequalification

Dynamic connection agreements and network prequalification methods

Dynamic price signals and tariffs

Consumers (individual or communities)

Dynamic Price Signals and Tariffs (implicit flexibility mechanisms)

Network tariff dimensions

Source: EUniversal Project D5.2 [1]

Illustration of capacity-based grid tariff (Flanders)

Source: EUniversal Project D5.2 [1]

Flexibility Markets

Flexibility Markets – Network and Market Representation

Flexibility Markets – Network and Market Representation

TSO-DSO Coordinated Flexibility Markets – Common Markets

TSO-DSO Coordinated Flexibility Markets – Multi-Level Markets

TSO-DSO Coordinated Flexibility Markets – Completed Analyses and Developed Tools

Joint markets can improve efficiency (pooling effect and value stacking potential) [2,3,5]

 Other key elements can also have a direct impact [2-8]

minimum clearing requirement [6]

- ✓ TSO-DSO Coordinated market models [2-6]
- Efficiency and sensitivity to key factors (entry barriers, FSP bidding processes, cross-system flexibility pricing, bid formats, etc.) [2-6]
- ✓ TSO-DSO cooperation and flexibility cost allocation [4]
- TSO-DSO coordination and grid safety under limited network information sharing [5]
- FSP strategic bidding (gaming potential) and impacts on market efficiency [2], [3], [8]
- Network modeling in local flexibility markets [7]
- Flexibility market implementation for congestion management demonstration in Sweden [9]
- Market clearing algorithm for a flexibility market demonstration in Finland, Estonia, Latvia, Lithuania [10]

Grid-Safe Use of Distributed Flexibility

 Grid constraints of distribution systems TSO-level market clearing

- FSPs from TSO and DSOs
- Grid constraints of transmission systems
- Grid constraints of distribution systems

TSO/EU-Level Markets (System and Grid Services)

Distribution grid-safety validation options:

- Pre-market (dynamic prequalification)
- During market clearing (constraint inclusion distributed solutions)
- Post-market clearing (correction/re-dispatch mechanisms)

Grid-Safe Use of Distributed Flexibility*

Grid-Safe Use of Distributed Flexibility*

Assessment dimensions: Grid Safety | Optimality | Computational Burden | Regulatory Coherence

*OneNet D3.3 [2]

Grid-Safe Use of Distributed Flexibility – Next steps

TSO-level market clearing

- FSPs from TSO and DSOs
- Grid constraints of transmission systems
- Representation of distribution grid constraint space without network information sharing (gridsafety with avoided *complexity*)

- On a pre-qualification basis
- ✓ Adapted depending on network state (dynamic)
- ✓ Allows including complex network constraints (when needed)
- Grid-safety guarantees

References

[1] G. de Almeida Terça et al., "Methodology for dynamic distribution grid tariffs", H2020 Euniversal D5.3, 2022 (euniversal.eu).

[2] A. Sanjab et al., "Recommendations for Consumer-Centric Products and Efficient Market Designs", H2020 OneNet D3.3, 2023 (onenet-project.eu)

[3] A. Sanjab et al., Evaluation of combinations of coordination schemes and products for grid services based on market simulations, *H2020 CoordiNet D6.2*, 2022 (coordinet-project.eu)

[4] A. Sanjab, H. Le Cadre and Y. Mou, "TSO-DSOs Stable Cost Allocation for the Joint Procurement of Flexibility: A Cooperative Game Approach," in *IEEE Transactions on Smart Grid*, vol. 13, no. 6, pp. 4449-4464, Nov. 2022.

[5] L. Marques, A. Sanjab, Y. Mou, H. Le Cadre and K. Kessels, "Grid Impact Aware TSO-DSO Market Models for Flexibility Procurement: Coordination, Pricing Efficiency, and Information Sharing," in *IEEE Transactions on Power Systems*, vol. 38, no. 2, pp. 1920-1933, March 2023

[6] A. Sanjab, L. Marques, H. Gerard and K. Kessels, "Joint and sequential DSO-TSO flexibility markets: efficiency drivers and key challenges," 27th International Conference on Electricity Distribution (CIRED 2023), 2023.

[7] A. Sanjab, Y. Mou, A. Virag and K. Kessels, "A Linear Model for Distributed Flexibility Markets and DLMPs: A Comparison with the SOCP Formulation," *26th International Conference and Exhibition on Electricity Distribution*, 2021.

[8] L. Marques, A. Sanjab and T. Cuypers, "Flexibility Service Providers' Gaming Potential and its Impact on TSO-DSO Coordinated Markets," International Conference on Smart Energy Systems and Technologies (SEST), 2023.

[9] Y. Ruwaida et al., "TSO-DSO-Customer, Coordination for Purchasing Flexibility System Services: Challenges and Lessons Learned from a Demonstration in Sweden," in *IEEE Transactions on Power Systems*, vol. 38, no. 2, pp. 1883-1895, March 2023

[10] K. Kukk et al., "Northern Cluster Demonstrator: TSO-DSO coordination module description and implementation", H2020 OneNet D7.4, 2022 (onenet-project.eu).

Thank you!

Anibal Sanjab anibal.sanjab@vito.be Wicak Ananduta wicak.ananduta@vito.be

